Indole-3-acetic acid (IAA), the main naturally occurring auxin, is essential for almost every aspect of plant growth and development. However, only recently have studies finally established the first complete auxin ...Indole-3-acetic acid (IAA), the main naturally occurring auxin, is essential for almost every aspect of plant growth and development. However, only recently have studies finally established the first complete auxin biosynthesis pathway that converts tryptophan (Trp) to IAA in plants. Trp is first converted to indole-3-pyruvate (IPA) by the TAA family of amino transferases and subsequently IAA is produced from IPA by the YUC family of flavin monooxygenases. The two- step conversion of Trp to IAA is the main auxin biosynthesis pathway that plays an essential role in many developmental processes.展开更多
As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition...As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen- sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.展开更多
文摘Indole-3-acetic acid (IAA), the main naturally occurring auxin, is essential for almost every aspect of plant growth and development. However, only recently have studies finally established the first complete auxin biosynthesis pathway that converts tryptophan (Trp) to IAA in plants. Trp is first converted to indole-3-pyruvate (IPA) by the TAA family of amino transferases and subsequently IAA is produced from IPA by the YUC family of flavin monooxygenases. The two- step conversion of Trp to IAA is the main auxin biosynthesis pathway that plays an essential role in many developmental processes.
基金supported by grants from the United States Department of AgricultureNational Institute of Food and Agriculture (NIFA 201015479+2 种基金 W.J.L.)the National Natural Science Foundation of China (31025022 H.L.)
文摘As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen- sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.
文摘糖基化是植物的普遍修饰反应,经修饰获得的糖基化产物具有不同的生物学功能,使得糖基化反应成为影响及调节植物生长代谢平衡的重要机制。植物尿苷二磷酸糖基转移酶(uridine diphosphate glycosyltransferase,UGT)属于糖基转移酶一号家族(GT family 1),主要以植物中最常见的尿苷二磷酸(UDP)-糖类为活化糖基分子供体,以类黄酮、酚酸、萜类以及植物激素等小分子化合物为糖基受体。由于UGT催化的底物种类繁多,产物活性差异较大,其催化的糖基化反应在植物生长发育及代谢调节过程中具有十分重要的作用。本文概述了植物UGT家族的蛋白结构、特征及催化底物的相关信息,由UGT参与植物的次生代谢、激素调控、逆境响应与脱毒反应四个方面重点总结了UGT的功能作用,同时对UGT在调控作物农艺性状中的作用和应用前景进行了探讨和展望,旨在为植物UGT的功能研究及生产应用提供一定的参考。