The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous ba...This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.展开更多
The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic sol...The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.展开更多
Using the extended homogenous balance method, we obtainabundant exact solution structures ofa (2+1)dimensional integrable model, the generalized Nizhnik-Novikov-Veselov equation. By means of the leading order termanal...Using the extended homogenous balance method, we obtainabundant exact solution structures ofa (2+1)dimensional integrable model, the generalized Nizhnik-Novikov-Veselov equation. By means of the leading order termanalysis, the nonlinear transformations of generalized Nizhnik-Novikov-Veselov equation are given first, and then somespecial types of single solitary wave solution and the multisoliton solutions are constructed.展开更多
An extended homogeneous balance method is suggested in this paper.Based on computerized symbolic computation and the homogeneous balance method,new exact traveling wave solutions of nonlinear partial differential equa...An extended homogeneous balance method is suggested in this paper.Based on computerized symbolic computation and the homogeneous balance method,new exact traveling wave solutions of nonlinear partial differential equations(PDEs)are presented.The shallow-water equations represent a simple yet realistic set of equations typically found in atmospheric or ocean modeling applications,we consider the exact solutions of the nonlinear generalized shallow water equation and the fourth order Boussinesq equation.Applying this method,with the aid of Mathematica,many new exact traveling wave solutions are successfully obtained.展开更多
Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the ai...The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the aid of sub-ODEs that admits a solution of sech-power or tanh-power type.In the special cases that the fractional power equals to 1 and 2,the solitary wave solutions of more than 10 important model equations arisen from mathematical physics are easily rediscovered.展开更多
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
文摘This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2+1)-dimensional dispersive long-wave equations . Starting from the homogeneous balance method, we find that the richness of the localized coherent structures of the model is caused by the entrance of two variable-separated arbitrary functions. For some special selections of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, breathers, instantons and ring solitons.
基金The project supported in part by Natural Science Foundation of Henan Province of China under Grant No. 2006110002 and the Science Foundation of Henan University of Science and Technology under Grant No. 2004ZD002
文摘The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.
文摘Using the extended homogenous balance method, we obtainabundant exact solution structures ofa (2+1)dimensional integrable model, the generalized Nizhnik-Novikov-Veselov equation. By means of the leading order termanalysis, the nonlinear transformations of generalized Nizhnik-Novikov-Veselov equation are given first, and then somespecial types of single solitary wave solution and the multisoliton solutions are constructed.
文摘An extended homogeneous balance method is suggested in this paper.Based on computerized symbolic computation and the homogeneous balance method,new exact traveling wave solutions of nonlinear partial differential equations(PDEs)are presented.The shallow-water equations represent a simple yet realistic set of equations typically found in atmospheric or ocean modeling applications,we consider the exact solutions of the nonlinear generalized shallow water equation and the fourth order Boussinesq equation.Applying this method,with the aid of Mathematica,many new exact traveling wave solutions are successfully obtained.
文摘Using the extended homogeneous balance method, we find some special types of single solitary wave solution and new types of the multisoliton solutions of the (3+1)-dimensional Jimbo-Miwa equation.
基金Supported by the Natural Science Foundation of Education Department of Henan Province of China under Grant No.2011B110013
文摘The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the aid of sub-ODEs that admits a solution of sech-power or tanh-power type.In the special cases that the fractional power equals to 1 and 2,the solitary wave solutions of more than 10 important model equations arisen from mathematical physics are easily rediscovered.