In this paper, we study the bifurcation problems of rough heteroclinic loups cormecting threc saddle points for a higher-dimensional system. Under some transversal conditions and the nontwisted condition. the existenc...In this paper, we study the bifurcation problems of rough heteroclinic loups cormecting threc saddle points for a higher-dimensional system. Under some transversal conditions and the nontwisted condition. the existence. uniqueness. nd incoexistencc of thc l-heteroclinic loop with threc or two saddle pomts. l-homoclinic orbit and l-periodic orbit near T are obtained. Nleanwhile, the bifurcation surfaces and existence regions are also given. Moreover. the above bifurcation results are extended to the case for heteroclinic loop with l saddle points.展开更多
The bifurcation problems of rough 2-point-loop are studied for the caseρ 1 1 >λ 1 1 ,ρ 2 1 <λ 2 1 ,ρ 1 1 ρ 2 1 <λ 1 1 λ 2 1 , where ?ρ i 1 <0 and λ i 1 >0 are the pair of principal eigenvalues...The bifurcation problems of rough 2-point-loop are studied for the caseρ 1 1 >λ 1 1 ,ρ 2 1 <λ 2 1 ,ρ 1 1 ρ 2 1 <λ 1 1 λ 2 1 , where ?ρ i 1 <0 and λ i 1 >0 are the pair of principal eigenvalues of unperturbed system at saddle point pi, i = 1,2. Under the transversal and nontwisted conditions, the authors obtain some results of the existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-periodic orbits and one 2-fold 1-periodic orbit. Moreover, the bifurcation surfaces and the existence regions are given, and the corresponding bifurcation graph is drawn.展开更多
New conditions for a planar homoclinic loop to have cyclicity two under multiple parameter perturbations have been obtained. As an application it is proved that a homoclinic loop of a nongeneric cubic Hamiltonian has ...New conditions for a planar homoclinic loop to have cyclicity two under multiple parameter perturbations have been obtained. As an application it is proved that a homoclinic loop of a nongeneric cubic Hamiltonian has cyclicity two under arbitrary quadratic perturbations.展开更多
It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions f...It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions for four nonlinear wave equations are discussed. Exact explicit parametric representations of some special travelling wave solutions are given. The results of this paper show that a loop solution consists of three different breaking travelling wave solutions. It is not one real loop soliton travelling wave solution.展开更多
This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and...This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are especially investigated.展开更多
In this paper, we study the perturbation of certain of cubic system. By using the method of multi-parameter perturbation theory and qualitative analysis, we infer that the system under consideration can have five limi...In this paper, we study the perturbation of certain of cubic system. By using the method of multi-parameter perturbation theory and qualitative analysis, we infer that the system under consideration can have five limit cycles.展开更多
In this paper, we make a complete study of the unfolding of a quadratic integrable system with a homoclinic loop. Making a Poincare transformation and using some new techniques to estimate the number of zeros of Abeli...In this paper, we make a complete study of the unfolding of a quadratic integrable system with a homoclinic loop. Making a Poincare transformation and using some new techniques to estimate the number of zeros of Abelian integrals, we obtain the complete bifurcation diagram and all phase portraits of systems corresponding to different regions in the parameter space. In particular, we prove that two is the maximal number of limit cycles bifurcating from the system under quadratic non- conservative perturbations.展开更多
This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bi...This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete and Continuous Dynamical Systems Series B. 14(1) (2010), 289-306]. It is shown that there are different parameter values for which the model has a limit cycle or a homoclinic loop.展开更多
This paper deals with a kind of fourth degree systems with perturbations. By using the method of multi-parameter perturbation theory and qualitative analysis, it is proved that the system can have six limit cycles.
In this article, using multi-parameter perturbation theory and qualitative analysis, the authors studied a kind of cubic system perturbed by degree five and ob-tained the system that can have 17 limit cycles giving th...In this article, using multi-parameter perturbation theory and qualitative analysis, the authors studied a kind of cubic system perturbed by degree five and ob-tained the system that can have 17 limit cycles giving their two kinds of distributions (see Fig.5).展开更多
In this paper, we discuss the Poincare bifurcation of a cubic Hamiltonian system with homoclinic loop. We prove that the system can generate at most seven limit cycles after a small perturbation of general cubic polyn...In this paper, we discuss the Poincare bifurcation of a cubic Hamiltonian system with homoclinic loop. We prove that the system can generate at most seven limit cycles after a small perturbation of general cubic polynomials.展开更多
In this paper, we are concerned with a cubic near-Hamiltonian system, whose unperturbed system is quadratic and has a symmetric homoclinic loop. By using the method developed in [12], we find that the system can have ...In this paper, we are concerned with a cubic near-Hamiltonian system, whose unperturbed system is quadratic and has a symmetric homoclinic loop. By using the method developed in [12], we find that the system can have 4 limit cycles with 3 of them being near the homoclinic loop. Further, we give a condition under which there exist 4 limit cycles.展开更多
This paper concerns the number and distributions of limit cycles in a Z 2-equivariant quintic planar vector field. 25 limit cycles are found in this special planar polynomial system and four different configurations o...This paper concerns the number and distributions of limit cycles in a Z 2-equivariant quintic planar vector field. 25 limit cycles are found in this special planar polynomial system and four different configurations of these limit cycles are also given by using the methods of the bifurcation theory and the qualitative analysis of the differential equation. It can be concluded that H(5) ? 25 = 52, where H(5) is the Hilbert number for quintic polynomial systems. The results obtained are useful to study the weakened 16th Hilbert problem.展开更多
基金Project supported byr the National Natural Science Foundation of China (100710122)Shanghai Municipal Foundation of Selected Academic Research.
文摘In this paper, we study the bifurcation problems of rough heteroclinic loups cormecting threc saddle points for a higher-dimensional system. Under some transversal conditions and the nontwisted condition. the existence. uniqueness. nd incoexistencc of thc l-heteroclinic loop with threc or two saddle pomts. l-homoclinic orbit and l-periodic orbit near T are obtained. Nleanwhile, the bifurcation surfaces and existence regions are also given. Moreover. the above bifurcation results are extended to the case for heteroclinic loop with l saddle points.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10071022)the Shanghai Priority Academic Discipline.
文摘The bifurcation problems of rough 2-point-loop are studied for the caseρ 1 1 >λ 1 1 ,ρ 2 1 <λ 2 1 ,ρ 1 1 ρ 2 1 <λ 1 1 λ 2 1 , where ?ρ i 1 <0 and λ i 1 >0 are the pair of principal eigenvalues of unperturbed system at saddle point pi, i = 1,2. Under the transversal and nontwisted conditions, the authors obtain some results of the existence of one 1-periodic orbit, one 1-periodic and one 1-homoclinic loop, two 1-periodic orbits and one 2-fold 1-periodic orbit. Moreover, the bifurcation surfaces and the existence regions are given, and the corresponding bifurcation graph is drawn.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 19531070 and 19771037)
文摘New conditions for a planar homoclinic loop to have cyclicity two under multiple parameter perturbations have been obtained. As an application it is proved that a homoclinic loop of a nongeneric cubic Hamiltonian has cyclicity two under arbitrary quadratic perturbations.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10671179)the Natural Science Foundation of Yunnan Province (Grant No. 2005A0013M)
文摘It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions for four nonlinear wave equations are discussed. Exact explicit parametric representations of some special travelling wave solutions are given. The results of this paper show that a loop solution consists of three different breaking travelling wave solutions. It is not one real loop soliton travelling wave solution.
基金Project supported by the National Natural Science Foundation of China (No.10371072) the Ministry of Education of China (No.20010248019, No.20020248010).
文摘This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are especially investigated.
基金Supported by the National Ministry of Education(No.20020248010)the National Natural Science Foundation of China(No.10371072)the Shanghai Leading Academic Discipline Project(No.T0401).
文摘In this paper, we study the perturbation of certain of cubic system. By using the method of multi-parameter perturbation theory and qualitative analysis, we infer that the system under consideration can have five limit cycles.
基金Supported by the National Natural Science Foundation of China (10172011)
文摘In this paper, we make a complete study of the unfolding of a quadratic integrable system with a homoclinic loop. Making a Poincare transformation and using some new techniques to estimate the number of zeros of Abelian integrals, we obtain the complete bifurcation diagram and all phase portraits of systems corresponding to different regions in the parameter space. In particular, we prove that two is the maximal number of limit cycles bifurcating from the system under quadratic non- conservative perturbations.
基金Supported by the National Natural Science Foundation of China(No.11101170)Research Project of the Central China Normal University(No.CCNU12A01007)the State Scholarship Fund of the China Scholarship Council(2011842509)
文摘This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie^Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete and Continuous Dynamical Systems Series B. 14(1) (2010), 289-306]. It is shown that there are different parameter values for which the model has a limit cycle or a homoclinic loop.
基金Project supported by the National Natural Science Foundation of China (No.10371072)the New Century Excellent Ttdents in University (No.NCBT-04-038)the Shanghai Leading Academic Discipline (No.T0401).
文摘This paper deals with a kind of fourth degree systems with perturbations. By using the method of multi-parameter perturbation theory and qualitative analysis, it is proved that the system can have six limit cycles.
基金Surported by the Foundation of Shandong University of Technology (2006KJM01)
文摘In this article, using multi-parameter perturbation theory and qualitative analysis, the authors studied a kind of cubic system perturbed by degree five and ob-tained the system that can have 17 limit cycles giving their two kinds of distributions (see Fig.5).
文摘In this paper, we discuss the Poincare bifurcation of a cubic Hamiltonian system with homoclinic loop. We prove that the system can generate at most seven limit cycles after a small perturbation of general cubic polynomials.
基金the National Natural Science Foundation of China under Grant (No.10671127)by Shanghai Shuguang Genzong Project(04SGG05)
文摘In this paper, we are concerned with a cubic near-Hamiltonian system, whose unperturbed system is quadratic and has a symmetric homoclinic loop. By using the method developed in [12], we find that the system can have 4 limit cycles with 3 of them being near the homoclinic loop. Further, we give a condition under which there exist 4 limit cycles.
基金Supported by NSFC(No.11761011)Natural Science Foundation of Guangxi Province(No.2020JJB110007)Middle-aged and Young Teachers’Basic Ability Promotion Project of Guangxi(No.2020KY16020)。
基金Supported by the Fund of Youth of Jiangsu University(Grant No.05JDG011)the National Natural Science Foundation of China(Nos.90610031,10671127)+1 种基金the Outstanding Personnel Program in Six Fields of Jiangsu Province(Grant No.6-A-029)Shanghai Shuguang Genzong Project(Grant No.04SGG05)
文摘This paper concerns the number and distributions of limit cycles in a Z 2-equivariant quintic planar vector field. 25 limit cycles are found in this special planar polynomial system and four different configurations of these limit cycles are also given by using the methods of the bifurcation theory and the qualitative analysis of the differential equation. It can be concluded that H(5) ? 25 = 52, where H(5) is the Hilbert number for quintic polynomial systems. The results obtained are useful to study the weakened 16th Hilbert problem.