为实现低损耗、抗弯曲的中红外激光传输,在3μm波段研究超低损耗空芯嵌套式反谐振无节点光纤,采用有限元法对空芯光纤的结构参数(管厚、包层毛细管外径、纤芯直径和嵌套管外径)进行数值仿真,并在3μm波段实现低至0.52 d B/km的光纤传输...为实现低损耗、抗弯曲的中红外激光传输,在3μm波段研究超低损耗空芯嵌套式反谐振无节点光纤,采用有限元法对空芯光纤的结构参数(管厚、包层毛细管外径、纤芯直径和嵌套管外径)进行数值仿真,并在3μm波段实现低至0.52 d B/km的光纤传输损耗。通过对空芯反谐振光纤和空芯嵌套式反谐振无节点光纤的弯曲损耗及泄漏损耗的对比研究,证明空芯嵌套式反谐振无节点光纤相比于空芯反谐振光纤在宽光谱范围内具有更低的传输损耗(损耗比最高可达22.87 d B)、更好的抗弯曲性能(弯曲半径为6.5 cm的损耗小于0.1 d B/m)。展开更多
We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has ...We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.展开更多
文摘为实现低损耗、抗弯曲的中红外激光传输,在3μm波段研究超低损耗空芯嵌套式反谐振无节点光纤,采用有限元法对空芯光纤的结构参数(管厚、包层毛细管外径、纤芯直径和嵌套管外径)进行数值仿真,并在3μm波段实现低至0.52 d B/km的光纤传输损耗。通过对空芯反谐振光纤和空芯嵌套式反谐振无节点光纤的弯曲损耗及泄漏损耗的对比研究,证明空芯嵌套式反谐振无节点光纤相比于空芯反谐振光纤在宽光谱范围内具有更低的传输损耗(损耗比最高可达22.87 d B)、更好的抗弯曲性能(弯曲半径为6.5 cm的损耗小于0.1 d B/m)。
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the Funds from the Chinese Academy of Sciences,and the National Natural Science Foundation of China(Grant Nos.11127901,10734080,61221064,60908008,and 61078037)
文摘We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.