The problem of a hollow thick-wall cylinder subject to quadric function pressures is solved with a new stress function, thus laying the basis for solving the spatial symmetric deformation of a hollow cylinder subject ...The problem of a hollow thick-wall cylinder subject to quadric function pressures is solved with a new stress function, thus laying the basis for solving the spatial symmetric deformation of a hollow cylinder subject to arbitrarily distributed pressures.展开更多
A three-dimensional numerical torsion shear test is presented on hollow cylinder specimen which is performed on a spherical assemblage with fixed principal stress axes using the discrete element code PFC3D.Stack wall ...A three-dimensional numerical torsion shear test is presented on hollow cylinder specimen which is performed on a spherical assemblage with fixed principal stress axes using the discrete element code PFC3D.Stack wall technique boundary conditions are employed and optimized to reasonably capture the microstructure evolution.Parametric studies are conducted in terms of the ratio κ,normal and shear stiffness of particles,wall stiffness and friction coefficients.Afterwards,in comparison with physical test,numerical results for a fixed principal stress angle(α=45°) are presented.The results show that the numerical test could capture the macro-micro mechanical behavior of the spherical particle assembly.The evolution of the coordination number demonstrates that particles in shear banding undergo remarkable decrease.The effects of localization on specimens illustrate that global stress and strain recorded from a hollow cylinder apparatus could not represent the localized response.The shearing band initiation and evolution from porosity and shear rate are visualized by contour lines in different shear strains.展开更多
As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with...As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with the rockburst phenomenon. However, due to the large-scale and difficult monitoring of real mining excavations, laboratory scale tests must be utilised to determine the conditions conducive to burst. To this end, this research focuses on the implementation of a new rockburst testing apparatus to replicate the stress conditions of a rock mass excavation at the time of bursting. This apparatus allows the determination of rockburst stresses and a relationship between deviatoric stress and in-situ pressure/depth. Using this relationship it is then possible to estimate the standardised stress levels for a certain rock type which might lead to rockburst occurrence. Furthermore, it is demonstrated that with increasing in-situ pressure, the likelihood(measured as a lower differential stress) and the extent(indicated by the increasing range of deviatoric stress) of rockburst increases. These findings provide valuable information about the conditions necessary for bursting in deep mining.展开更多
Guided elastic waves have a great potential in pipe inspection as an efficient and low-cost nondestructive evaluation (NDE) technique, among which the wave of mode L(0, 2) receives a lot of attention because this ...Guided elastic waves have a great potential in pipe inspection as an efficient and low-cost nondestructive evaluation (NDE) technique, among which the wave of mode L(0, 2) receives a lot of attention because this mode is the fastest mode in a weakly dispersive region of frequency to minimize dispersion effects over a long distance and sensitive to the defects distributed circumferentially. Though many experimental and numerical researches have already been carried out about the excitation of L(0, 2) and its interaction with the defect in a hollow cylinder, its excitation mechanism has not been clarified yet. In this paper based on the transient response solution of the hollow cylinder, derived by the method of eigenfunction expansion, the theory about the exciting mechanism of mode L(0, 2) is advanced and the effects of the spatial distribution, vibration frequency and direction of the external force on the excitation are discussed. And the pure mode L(0, 2) is excited successfully under the parameters obtained through theoretical analysis. Furthermore, its interactions with some kinds of defects in hollow cylinders are simulated with the method of finite element analysis (FEA) and the results agree well with those obtained by other researchers.展开更多
The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully co...The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully considered.In this study,compression tests with and without confining pressure were conducted on solid specimens and hollow cylinder specimens filled with aluminium,lead,and polymethyl methacrylate(PMMA)to investigate the strength,deformation and failure characteristics of circular roadways subjected to high axial stress.The influence of the three-dimensional stress on the surrounding rock supported with different stiffness was studied.The results indicate that the strength and peak strain of hollow cylinders filled with PMMA are higher than those of hollow cylinders filled with aluminium or lead,indicating that flexible retaining is beneficial for roadway stability.The results obtained in this paper can contribute to better understanding the support failure of a buried roadway subjected to high axial stress and thus to analyzing and evaluating roadway stability.展开更多
Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and ...Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.展开更多
文摘The problem of a hollow thick-wall cylinder subject to quadric function pressures is solved with a new stress function, thus laying the basis for solving the spatial symmetric deformation of a hollow cylinder subject to arbitrarily distributed pressures.
基金Project(41202186) supported by the National Natural Science Foundation of ChinaProject(LQ12E08007) supported by the Zhejiang Natural Science Foundation,ChinaProject(#11-KF-08) supported by the Partially Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering,Guilin University of Technology,China
文摘A three-dimensional numerical torsion shear test is presented on hollow cylinder specimen which is performed on a spherical assemblage with fixed principal stress axes using the discrete element code PFC3D.Stack wall technique boundary conditions are employed and optimized to reasonably capture the microstructure evolution.Parametric studies are conducted in terms of the ratio κ,normal and shear stiffness of particles,wall stiffness and friction coefficients.Afterwards,in comparison with physical test,numerical results for a fixed principal stress angle(α=45°) are presented.The results show that the numerical test could capture the macro-micro mechanical behavior of the spherical particle assembly.The evolution of the coordination number demonstrates that particles in shear banding undergo remarkable decrease.The effects of localization on specimens illustrate that global stress and strain recorded from a hollow cylinder apparatus could not represent the localized response.The shearing band initiation and evolution from porosity and shear rate are visualized by contour lines in different shear strains.
基金the Australian Research Council (No.LP150100539)
文摘As mining delves deeper into the crust, it is necessary to investigate the complex rock responses associated with higher stress gradients. Therefore, it is essential to better understand the mechanisms associated with the rockburst phenomenon. However, due to the large-scale and difficult monitoring of real mining excavations, laboratory scale tests must be utilised to determine the conditions conducive to burst. To this end, this research focuses on the implementation of a new rockburst testing apparatus to replicate the stress conditions of a rock mass excavation at the time of bursting. This apparatus allows the determination of rockburst stresses and a relationship between deviatoric stress and in-situ pressure/depth. Using this relationship it is then possible to estimate the standardised stress levels for a certain rock type which might lead to rockburst occurrence. Furthermore, it is demonstrated that with increasing in-situ pressure, the likelihood(measured as a lower differential stress) and the extent(indicated by the increasing range of deviatoric stress) of rockburst increases. These findings provide valuable information about the conditions necessary for bursting in deep mining.
文摘Guided elastic waves have a great potential in pipe inspection as an efficient and low-cost nondestructive evaluation (NDE) technique, among which the wave of mode L(0, 2) receives a lot of attention because this mode is the fastest mode in a weakly dispersive region of frequency to minimize dispersion effects over a long distance and sensitive to the defects distributed circumferentially. Though many experimental and numerical researches have already been carried out about the excitation of L(0, 2) and its interaction with the defect in a hollow cylinder, its excitation mechanism has not been clarified yet. In this paper based on the transient response solution of the hollow cylinder, derived by the method of eigenfunction expansion, the theory about the exciting mechanism of mode L(0, 2) is advanced and the effects of the spatial distribution, vibration frequency and direction of the external force on the excitation are discussed. And the pure mode L(0, 2) is excited successfully under the parameters obtained through theoretical analysis. Furthermore, its interactions with some kinds of defects in hollow cylinders are simulated with the method of finite element analysis (FEA) and the results agree well with those obtained by other researchers.
基金Projects(11772357,51474103,51504092)supported by the National Natural Science Foundation of ChinaProject(2016YFC0600706)supported by the National Key Research and Development Program of China
文摘The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully considered.In this study,compression tests with and without confining pressure were conducted on solid specimens and hollow cylinder specimens filled with aluminium,lead,and polymethyl methacrylate(PMMA)to investigate the strength,deformation and failure characteristics of circular roadways subjected to high axial stress.The influence of the three-dimensional stress on the surrounding rock supported with different stiffness was studied.The results indicate that the strength and peak strain of hollow cylinders filled with PMMA are higher than those of hollow cylinders filled with aluminium or lead,indicating that flexible retaining is beneficial for roadway stability.The results obtained in this paper can contribute to better understanding the support failure of a buried roadway subjected to high axial stress and thus to analyzing and evaluating roadway stability.
文摘Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.