高分六号(GF-6)卫星于2018年成功发射,2019-03正式投入使用。由于GF-6宽幅相机的WFV(Wide Field of View)影像较GF-1的同类影像新增2个红边波段,将会提高对农业、林业、草原等资源监测能力。为了分析GF-6的WFV影像在人工林分类方面的能...高分六号(GF-6)卫星于2018年成功发射,2019-03正式投入使用。由于GF-6宽幅相机的WFV(Wide Field of View)影像较GF-1的同类影像新增2个红边波段,将会提高对农业、林业、草原等资源监测能力。为了分析GF-6的WFV影像在人工林分类方面的能力,促进高分数据在林业领域的应用,本文选取广西高峰林场为研究区,以最新的GF-6 WFV影像为数据源,结合地面实测类型数据,进行广西南宁高峰林场的桉树,杉木等人工林类型提取。主要运用随机森林(random forests)的分层分类法:首先计算6种植被指数,并利用随机森林法进行植被指数的特征优选,然后确定4种波段组合数据集的分类方案,4种数据集分别为(1)无红边的前4个波段,(2)有红边的8个波段,(3)8个波段加上未优化的植被指数特征组合,(4)8个波段加上优化的植被指数特征组合。再进行WFV影像4种数据集的随机森林分类,随机森林采用分类回归树(CART)算法来生成分类树,结合了bagging和随机选择特征变量的优点,是一种有效的分类方法。最后比较4个方案的分类结果并进行精度验证。结果表明:方案2比方案1精度提高了4.99%,Kappa系数提高了0.058。说明包含红边的8波段数据比4个波段数据精度有大幅提升。方案4的8波段加上优化植被指数特征组合的分类精度最高,达到了85.38%,比方案2包含红边波段组和方案1无红边波段组的精度分别提高了3.98%,8.97%,Kappa系数分别提高了0.046,0.104。说明WFV影像加入红边波段比无红边波段精度明显增高。由结果可知,红边指数的引入,增强了植被信息,能够较准确地反映人工林类型特征差异,明显提升了人工林的分类精度。本研究方法可以有效改善广西人工林类型信息提取效果,为GF-6影像质量的评价及其在林业应用潜力提供科学参考依据。展开更多
This study proposed a weighted sampling hierarchical classification learning method based on an efficient backbone network model to address the problems of high costs,low accuracy,and time-consuming traditional tea di...This study proposed a weighted sampling hierarchical classification learning method based on an efficient backbone network model to address the problems of high costs,low accuracy,and time-consuming traditional tea disease recognition methods.This method enhances the feature extraction ability by conducting hierarchical classification learning based on the EfficientNet model,effectively alleviating the impact of high similarity between tea diseases on the model’s classification performance.To better solve the problem of few and unevenly distributed tea disease samples,this study introduced a weighted sampling scheme to optimize data processing,which not only alleviates the overfitting effect caused by too few sample data but also balances the probability of extracting imbalanced classification data.The experimental results show that the proposed method was significant in identifying both healthy tea leaves and four common leaf diseases of tea(tea algal spot disease,tea white spot disease,tea anthracnose disease,and tea leaf blight disease).After applying the“weighted sampling hierarchical classification learning method”to train 7 different efficient backbone networks,most of their accuracies have improved.The EfficientNet-B1 model proposed in this study achieved an accuracy rate of 99.21%after adopting this learning method,which is higher than EfficientNet-b2(98.82%)and MobileNet-V3(98.43%).In addition,to better apply the results of identifying tea diseases,this study developed a mini-program that operates on WeChat.Users can quickly obtain accurate identification results and corresponding disease descriptions and prevention methods through simple operations.This intelligent tool for identifying tea diseases can serve as an auxiliary tool for farmers,consumers,and related scientific researchers and has certain practical value.展开更多
The exploitation of systems using solar energy as a source of energy is not fluctuations free because of short passage of clouds on solar radiation. The amplitude, the persistence and the frequency of these fluctuatio...The exploitation of systems using solar energy as a source of energy is not fluctuations free because of short passage of clouds on solar radiation. The amplitude, the persistence and the frequency of these fluctuations should be analyzed with appropriate tools, instead of focusing on their location over time. The analysis of these fluctuations should use the instantaneous clearness index whose distribution is given as a first approximation which is independent not only of the season but also of the site. It is important to evaluate the potential solar energy in a region. Indeed such evaluation helps the decision-makers in their reflections on agricultural or photovoltaic solar projects. Then this study was conducted for a predictive purpose. The method used in our work combines the classification method which is the hierarchical ascending classification and two partitioning methods, the principal component?analysis and the K-means method. The partitioning method enabled to?achieve a number of well-known situations (in advance) that are representative of the day. The study was based on the data of a climatic weather station in the district of Yamoussoukro located in the center region of Côte d’Ivoire during the 2017 year. Using the clearness index, the study allowed the classification of the solar radiation in the region. Thus, it showed that only 346 days of the 365 days in 2017 were classified (95%). We identified three clusters of days, the cloudy sky (29%), the partly cloudy sky?(32%) and the clear sky (39%). The statistical tests used for the characterization?of these clusters will be detailed in a future study.展开更多
文摘高分六号(GF-6)卫星于2018年成功发射,2019-03正式投入使用。由于GF-6宽幅相机的WFV(Wide Field of View)影像较GF-1的同类影像新增2个红边波段,将会提高对农业、林业、草原等资源监测能力。为了分析GF-6的WFV影像在人工林分类方面的能力,促进高分数据在林业领域的应用,本文选取广西高峰林场为研究区,以最新的GF-6 WFV影像为数据源,结合地面实测类型数据,进行广西南宁高峰林场的桉树,杉木等人工林类型提取。主要运用随机森林(random forests)的分层分类法:首先计算6种植被指数,并利用随机森林法进行植被指数的特征优选,然后确定4种波段组合数据集的分类方案,4种数据集分别为(1)无红边的前4个波段,(2)有红边的8个波段,(3)8个波段加上未优化的植被指数特征组合,(4)8个波段加上优化的植被指数特征组合。再进行WFV影像4种数据集的随机森林分类,随机森林采用分类回归树(CART)算法来生成分类树,结合了bagging和随机选择特征变量的优点,是一种有效的分类方法。最后比较4个方案的分类结果并进行精度验证。结果表明:方案2比方案1精度提高了4.99%,Kappa系数提高了0.058。说明包含红边的8波段数据比4个波段数据精度有大幅提升。方案4的8波段加上优化植被指数特征组合的分类精度最高,达到了85.38%,比方案2包含红边波段组和方案1无红边波段组的精度分别提高了3.98%,8.97%,Kappa系数分别提高了0.046,0.104。说明WFV影像加入红边波段比无红边波段精度明显增高。由结果可知,红边指数的引入,增强了植被信息,能够较准确地反映人工林类型特征差异,明显提升了人工林的分类精度。本研究方法可以有效改善广西人工林类型信息提取效果,为GF-6影像质量的评价及其在林业应用潜力提供科学参考依据。
基金financial support provided by the Major Project of Yunnan Science and Technology,under Project No.202302AE09002003,entitled“Research on the Integration of Key Technologies in Smart Agriculture.”。
文摘This study proposed a weighted sampling hierarchical classification learning method based on an efficient backbone network model to address the problems of high costs,low accuracy,and time-consuming traditional tea disease recognition methods.This method enhances the feature extraction ability by conducting hierarchical classification learning based on the EfficientNet model,effectively alleviating the impact of high similarity between tea diseases on the model’s classification performance.To better solve the problem of few and unevenly distributed tea disease samples,this study introduced a weighted sampling scheme to optimize data processing,which not only alleviates the overfitting effect caused by too few sample data but also balances the probability of extracting imbalanced classification data.The experimental results show that the proposed method was significant in identifying both healthy tea leaves and four common leaf diseases of tea(tea algal spot disease,tea white spot disease,tea anthracnose disease,and tea leaf blight disease).After applying the“weighted sampling hierarchical classification learning method”to train 7 different efficient backbone networks,most of their accuracies have improved.The EfficientNet-B1 model proposed in this study achieved an accuracy rate of 99.21%after adopting this learning method,which is higher than EfficientNet-b2(98.82%)and MobileNet-V3(98.43%).In addition,to better apply the results of identifying tea diseases,this study developed a mini-program that operates on WeChat.Users can quickly obtain accurate identification results and corresponding disease descriptions and prevention methods through simple operations.This intelligent tool for identifying tea diseases can serve as an auxiliary tool for farmers,consumers,and related scientific researchers and has certain practical value.
文摘The exploitation of systems using solar energy as a source of energy is not fluctuations free because of short passage of clouds on solar radiation. The amplitude, the persistence and the frequency of these fluctuations should be analyzed with appropriate tools, instead of focusing on their location over time. The analysis of these fluctuations should use the instantaneous clearness index whose distribution is given as a first approximation which is independent not only of the season but also of the site. It is important to evaluate the potential solar energy in a region. Indeed such evaluation helps the decision-makers in their reflections on agricultural or photovoltaic solar projects. Then this study was conducted for a predictive purpose. The method used in our work combines the classification method which is the hierarchical ascending classification and two partitioning methods, the principal component?analysis and the K-means method. The partitioning method enabled to?achieve a number of well-known situations (in advance) that are representative of the day. The study was based on the data of a climatic weather station in the district of Yamoussoukro located in the center region of Côte d’Ivoire during the 2017 year. Using the clearness index, the study allowed the classification of the solar radiation in the region. Thus, it showed that only 346 days of the 365 days in 2017 were classified (95%). We identified three clusters of days, the cloudy sky (29%), the partly cloudy sky?(32%) and the clear sky (39%). The statistical tests used for the characterization?of these clusters will be detailed in a future study.