当前分布式光伏系统短期发电功率预测结构多设定为目标式,预测范围在实际发电环境下受限,导致平均绝对预测误差增加。为此设计基于利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using Hierarchies,BIR...当前分布式光伏系统短期发电功率预测结构多设定为目标式,预测范围在实际发电环境下受限,导致平均绝对预测误差增加。为此设计基于利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using Hierarchies,BIRCH)的分布式光伏系统短期发电功率预测方法。首先,明确预测指标,采用多层级的方式设计预测结构;其次,结合BIRCH原理,设计发电功率预测模型;最后,采用梯度回归处理的方式来实现最终预测。测试结果表明,对比传统变分模态分解-麻雀搜索算法-反向传播(Variational Mode Decomposition-Sparrow Search Algorithm-Back Propagation,VMD-SSA-BP)光伏系统短期发电功率预测小组、传统时序动态回归光伏系统短期发电功率预测小组,此次所设计的方法得出的平均绝对预测误差被较好地控制在2.1以下,预测效果更佳,针对性更强,误差可控,具有实际的应用价值。展开更多