[ Objective] The research aimed to study response rule of the M. aeruginosa fluorescence on the biological toxicity of HgCI2. [ Method ] M. aeruginosa as material, fluorescence intensity at its best excitation and emi...[ Objective] The research aimed to study response rule of the M. aeruginosa fluorescence on the biological toxicity of HgCI2. [ Method ] M. aeruginosa as material, fluorescence intensity at its best excitation and emission wavelengths as measured indicator, influence of the HgCI2 at different mass concentrations on fluorescence intensity of the M. aeruginosa was discussed initially. [ Result] HgCI2 at different mass concentrations had different influences on M. aeruginosa. HgCI2 at low concentration (0.002 -0.004 mg/L)could promote photosynthesis of the M. aeruginosa. It showed as fluorescence value of the algae liquid becoming smaller. 0.010 -0.400 mg/L of HgCI2 inhibited photosynthesis of the M. aeruginosa. It showed as fluorescence value of the algae liquid becoming bigger. Moreover, inhibition effect increased as HgCI2 concentration rose, showing a positive correlation between HgCI2 concentration and toxicity ( R 2 = 0.963 5 ). [ Conclusion ] The research provided new theoretical basis for quickly measuring water toxicity.展开更多
基金Supported by National 863 Item,China (2007AA092201)
文摘[ Objective] The research aimed to study response rule of the M. aeruginosa fluorescence on the biological toxicity of HgCI2. [ Method ] M. aeruginosa as material, fluorescence intensity at its best excitation and emission wavelengths as measured indicator, influence of the HgCI2 at different mass concentrations on fluorescence intensity of the M. aeruginosa was discussed initially. [ Result] HgCI2 at different mass concentrations had different influences on M. aeruginosa. HgCI2 at low concentration (0.002 -0.004 mg/L)could promote photosynthesis of the M. aeruginosa. It showed as fluorescence value of the algae liquid becoming smaller. 0.010 -0.400 mg/L of HgCI2 inhibited photosynthesis of the M. aeruginosa. It showed as fluorescence value of the algae liquid becoming bigger. Moreover, inhibition effect increased as HgCI2 concentration rose, showing a positive correlation between HgCI2 concentration and toxicity ( R 2 = 0.963 5 ). [ Conclusion ] The research provided new theoretical basis for quickly measuring water toxicity.