Mitochondrial DNA(mtDNA) is particularly prone to oxidation due to the lack of histones and a deficient mismatch repair system.This explains an increased mutation rate of mtDNA that results in heteroplasmy,e.g.,the co...Mitochondrial DNA(mtDNA) is particularly prone to oxidation due to the lack of histones and a deficient mismatch repair system.This explains an increased mutation rate of mtDNA that results in heteroplasmy,e.g.,the coexistence of the mutant and wild-type mtDNA molecules within the same mitochondrion.In diabetes mellitus,glycotoxicity,advanced oxidative stress,collagen cross-linking,and accumulation of lipid peroxides in foam macrophage cells and arterial wall cells may significantly decrease the mutation threshold required for mitochondrial dysfunction,which in turn further contributes to the oxidative damage of the diabetic vascular wall,endothelial dysfunc-tion,and atherosclerosis.展开更多
In Senegal in particular, ovarian cancer, which is one of the most common gynecological cancers, accounts for 2.8% of deaths. The most important risk factor is genetic, with 10% of cases occurring in a context of gene...In Senegal in particular, ovarian cancer, which is one of the most common gynecological cancers, accounts for 2.8% of deaths. The most important risk factor is genetic, with 10% of cases occurring in a context of genetic predisposition. The sequencing of the human genome, which has led to the discovery of millions of sequence variations, makes it possible to study variations within sequences. These variations are limited to Single Nucleotide Polymorphisms (SNPs) and this common form of polymorphism occurs approximately every 1000 bases in the human genome and 1.8 million SNPs are currently listed according to [1]. The aim of this study is to gain a better understanding of the impact of mutations in the D-loop region of mtDNA on ovarian cancer in Senegalese women. This study involved searching for mutations in our study population after DNA extraction and sequencing. Mutations were found after a comparison of our sequences with the Cambridge reference sequence (NC_012920). The mutations found in the DNA studied extend from position 7 to position 16568 and most of these mutations are located in the hypervariate zones (HV1 and HV2). Heteroplasmy with three mutant alleles was also found in certain variants. Common mutations were found in both healthy and cancerous tissues, with almost identical frequencies in both types of tissue. This enabled us to understand the spread of tumor cells throughout the ovary.展开更多
Little is known about the inheritance of very low heteroplasmy mitochondria DNA (mtDNA) variations. Even with the development of new next-generation sequencing methods, the practical lower limit of measured heteropl...Little is known about the inheritance of very low heteroplasmy mitochondria DNA (mtDNA) variations. Even with the development of new next-generation sequencing methods, the practical lower limit of measured heteroplasmy is still about 1% due to the inherent noise level of the sequencing. In this study, we sequenced the mitochondrial genome of 44 individuals using Illumina high-throughput sequencing technology and obtained high-coverage mitochondria sequencing data. Our study population contains many mother-offspring pairs. This unique study design allows us to bypass the usual heteroplasmy limitation by analyzing the correlation of mutation levels at each position in the mtDNA sequence between maternally related pairs and non-related pairs. The study showed that very low heteroplasmy variants, down to almost 0.1%, are inherited maternally and that this inheritance begins to decrease at about 0.5%, cor- resnondin to abottleneck of about 200 mtDNA.展开更多
Background: Mitochondrial diseases are a group of energy metabolic disorders with multisystem involvements. Variable clinical features present a major challenge in pediatric diagnoses. We summarized the clinical spec...Background: Mitochondrial diseases are a group of energy metabolic disorders with multisystem involvements. Variable clinical features present a major challenge in pediatric diagnoses. We summarized the clinical spectrum of m.3243A〉G mutation in Chinese pediatric patients, to define the common clinical manifestations and study the correlation between heteroplasmic degree of the mutation and clinical severity of the disease. Methods: Clinical data of one-hundred pediatric patients with symptomatic mitochondrial disease harboring m.3243A〉G mutation from 2007 to 2013 were retrospectively reviewed. Detection of m.3243A〉G mutation ratio was performed by polymerase chain reaction (PCR)-restriction fragment length polymorphism. Correlation between m.3243A〉G mutation ratio and age was evaluated. The differences in clinical symptom frequency of patients with low, middle, and high levels of mutation ratio were analyzed by Chi-square test. Results: Sixty-six patients (66%) had suffered a delayed diagnosis for an average of 2 years. The most frequent symptoms were seizures (76%), short stature (73%), elevated plasma lactate (70%), abnormal magnetic resonance imaging/computed tomography (MRI/CT) changes (68%), vomiting (55%), decreased vision (52%), headache (50%), and muscle weakness (48%). The mutation ratio was correlated negatively with onset age (r = -0.470, P 〈 0.001). Myopathy was more frequent in patients with a high level of mutation ratio. However, patients with a low or middle level of m.3243A〉G mutation ratio were more likely to suffer hearing loss, decreased vision, and gastrointestinal disturbance than patients with a high level of mutation ratio. Conclusions: Our study showed that half of Chinese pediatric patients with m.3243A〉G mutation presented seizures, short stature, abnormal MRI/CT changes, elevated plasma lactate, vomiting, and headache. Pediatric patients with these recurrent symptoms should be considered for screening m.3243A〉G mu展开更多
目的研究线粒体DNA 1555A>G异质性突变大家系,异质性水平及其与耳聋临床表型的关系,以及异质性的代代传递情况。方法运用聚合酶链反应-限制性片段长度多态性技术、直接测序法及变性高效液相色谱技术(Denaturing High Performance Liq...目的研究线粒体DNA 1555A>G异质性突变大家系,异质性水平及其与耳聋临床表型的关系,以及异质性的代代传递情况。方法运用聚合酶链反应-限制性片段长度多态性技术、直接测序法及变性高效液相色谱技术(Denaturing High Performance Liquid Chromatography,DHPLC)检测家系成员的1555A>G突变异质性并定量,结合其临床表型进行分析。结果临床资料显示,该家系的临床表型从正常到重度、极重度耳聋,呈现多样化。实验室检测结果为:经酶切和测序共检测出6个异质性突变、10个同质性突变和2个野生型;DHPLC定量分析结果显示,异质性水平介于11.9%-97.9%之间,并且在酶切和测序结果显示为野生型或同质性突变的样品中又发现了4个异质性突变。结论异质性水平与耳聋程度/氨基糖甙类药物敏感度之间有很强的关联性(r=0.758,P<0.001)。此外,母亲的异质性水平控制或影响着子代的异质性,提示线粒体DNA异质性代代传递过程中可能存在一种规律。展开更多
基金Supported by The Russian Ministry of Science and Education
文摘Mitochondrial DNA(mtDNA) is particularly prone to oxidation due to the lack of histones and a deficient mismatch repair system.This explains an increased mutation rate of mtDNA that results in heteroplasmy,e.g.,the coexistence of the mutant and wild-type mtDNA molecules within the same mitochondrion.In diabetes mellitus,glycotoxicity,advanced oxidative stress,collagen cross-linking,and accumulation of lipid peroxides in foam macrophage cells and arterial wall cells may significantly decrease the mutation threshold required for mitochondrial dysfunction,which in turn further contributes to the oxidative damage of the diabetic vascular wall,endothelial dysfunc-tion,and atherosclerosis.
文摘In Senegal in particular, ovarian cancer, which is one of the most common gynecological cancers, accounts for 2.8% of deaths. The most important risk factor is genetic, with 10% of cases occurring in a context of genetic predisposition. The sequencing of the human genome, which has led to the discovery of millions of sequence variations, makes it possible to study variations within sequences. These variations are limited to Single Nucleotide Polymorphisms (SNPs) and this common form of polymorphism occurs approximately every 1000 bases in the human genome and 1.8 million SNPs are currently listed according to [1]. The aim of this study is to gain a better understanding of the impact of mutations in the D-loop region of mtDNA on ovarian cancer in Senegalese women. This study involved searching for mutations in our study population after DNA extraction and sequencing. Mutations were found after a comparison of our sequences with the Cambridge reference sequence (NC_012920). The mutations found in the DNA studied extend from position 7 to position 16568 and most of these mutations are located in the hypervariate zones (HV1 and HV2). Heteroplasmy with three mutant alleles was also found in certain variants. Common mutations were found in both healthy and cancerous tissues, with almost identical frequencies in both types of tissue. This enabled us to understand the spread of tumor cells throughout the ovary.
基金supported by the grant from the National Cancer Institute(RO1 CA104666)supported in part by the Vanderbilt-Ingram Cancer Center(P30 CA68485)
文摘Little is known about the inheritance of very low heteroplasmy mitochondria DNA (mtDNA) variations. Even with the development of new next-generation sequencing methods, the practical lower limit of measured heteroplasmy is still about 1% due to the inherent noise level of the sequencing. In this study, we sequenced the mitochondrial genome of 44 individuals using Illumina high-throughput sequencing technology and obtained high-coverage mitochondria sequencing data. Our study population contains many mother-offspring pairs. This unique study design allows us to bypass the usual heteroplasmy limitation by analyzing the correlation of mutation levels at each position in the mtDNA sequence between maternally related pairs and non-related pairs. The study showed that very low heteroplasmy variants, down to almost 0.1%, are inherited maternally and that this inheritance begins to decrease at about 0.5%, cor- resnondin to abottleneck of about 200 mtDNA.
基金This study was supported by grants from National Natural Science Foundation of China (No. 81271256 and No. 81471153) and the Capital Characteristic Clinical Application Research Projects (No. Z 1311070022 13062).
文摘Background: Mitochondrial diseases are a group of energy metabolic disorders with multisystem involvements. Variable clinical features present a major challenge in pediatric diagnoses. We summarized the clinical spectrum of m.3243A〉G mutation in Chinese pediatric patients, to define the common clinical manifestations and study the correlation between heteroplasmic degree of the mutation and clinical severity of the disease. Methods: Clinical data of one-hundred pediatric patients with symptomatic mitochondrial disease harboring m.3243A〉G mutation from 2007 to 2013 were retrospectively reviewed. Detection of m.3243A〉G mutation ratio was performed by polymerase chain reaction (PCR)-restriction fragment length polymorphism. Correlation between m.3243A〉G mutation ratio and age was evaluated. The differences in clinical symptom frequency of patients with low, middle, and high levels of mutation ratio were analyzed by Chi-square test. Results: Sixty-six patients (66%) had suffered a delayed diagnosis for an average of 2 years. The most frequent symptoms were seizures (76%), short stature (73%), elevated plasma lactate (70%), abnormal magnetic resonance imaging/computed tomography (MRI/CT) changes (68%), vomiting (55%), decreased vision (52%), headache (50%), and muscle weakness (48%). The mutation ratio was correlated negatively with onset age (r = -0.470, P 〈 0.001). Myopathy was more frequent in patients with a high level of mutation ratio. However, patients with a low or middle level of m.3243A〉G mutation ratio were more likely to suffer hearing loss, decreased vision, and gastrointestinal disturbance than patients with a high level of mutation ratio. Conclusions: Our study showed that half of Chinese pediatric patients with m.3243A〉G mutation presented seizures, short stature, abnormal MRI/CT changes, elevated plasma lactate, vomiting, and headache. Pediatric patients with these recurrent symptoms should be considered for screening m.3243A〉G mu