期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
基于异构网络面向多标签系统的推荐模型研究 被引量:12
1
作者 王瑜 武延军 +1 位作者 吴敬征 刘晓燕 《软件学报》 EI CSCD 北大核心 2017年第10期2611-2624,共14页
标签成为信息组织的重要方式之一,随着推荐系统的蓬勃发展,标签推荐成为学者们研究的重要问题之一.目前存在各种各样的标签系统,其功能千差万别,标签数据信息越来越复杂.目前研究往往针对特定类型标签数据,缺乏既综合考虑标签数据中不... 标签成为信息组织的重要方式之一,随着推荐系统的蓬勃发展,标签推荐成为学者们研究的重要问题之一.目前存在各种各样的标签系统,其功能千差万别,标签数据信息越来越复杂.目前研究往往针对特定类型标签数据,缺乏既综合考虑标签数据中不同类型对象的复杂信息又能适用于多种标签系统数据的标签推荐模型.构建了标签推荐模型Hn MTR,该模型首先针对标签数据中不同类型对象构建异构网络模型,其次对异构网络模型中不同类型顶点进行同空间映射,使不同类型的顶点和边可在同一空间进行量化比较;最后基于同空间映射后网络,引入多参数马尔可夫模型进行标签评分和推荐.通过基于豆瓣、Delicious和Meetup这3个标签系统数据实验,其结果表明,Hn MTR模型平均准确率比目前主流算法提高10%以上,取得了较好的推荐结果. 展开更多
关键词 异构网络 网络嵌入 标签推荐 标签系统周模型
下载PDF
从异构嵌入到整合共生:乡村文化教育综合体建设与乡村文化振兴 被引量:8
2
作者 滕瀚 《安徽农业大学学报(社会科学版)》 2019年第3期17-22,86,共7页
乡村文化振兴是乡村振兴战略的重要组成部分,乡村教育发展对乡村文化振兴具有根本性作用。乡村文化系统和乡村教育系统虽然具有不同的结构构成,在乡村发展功能上各有侧重,但是它们都是乡村公共文化服务系统的一部分,它们在乡村振兴中具... 乡村文化振兴是乡村振兴战略的重要组成部分,乡村教育发展对乡村文化振兴具有根本性作用。乡村文化系统和乡村教育系统虽然具有不同的结构构成,在乡村发展功能上各有侧重,但是它们都是乡村公共文化服务系统的一部分,它们在乡村振兴中具有结构上的互相嵌入性、功能上的相互整合促进性以及发展过程中的共生性。开展乡村文化教育综合体建设,可实现乡村文化和乡村教育的异构嵌入、功能整合、发展共生,进而实现乡村文化的振兴。 展开更多
关键词 异构嵌入 整合共生 乡村文化教育综合体 乡村文化振兴 乡村教育发展
下载PDF
基于元路径卷积的异构图神经网络算法
3
作者 秦志龙 邓琨 刘星妍 《电信科学》 北大核心 2024年第3期89-103,共15页
现有异构图嵌入方法在多层图卷积计算中,通常将每个节点表示为单个向量,使得高阶图卷积层无法区分不同关系和顺序的信息,导致信息在传递过程中丢失。为解决该问题,提出了基于元路径卷积的异构图神经网络算法。该方法首先利用特征转换自... 现有异构图嵌入方法在多层图卷积计算中,通常将每个节点表示为单个向量,使得高阶图卷积层无法区分不同关系和顺序的信息,导致信息在传递过程中丢失。为解决该问题,提出了基于元路径卷积的异构图神经网络算法。该方法首先利用特征转换自适应调整节点特征;其次,设计了元路径内卷积挖掘节点高阶间接关系,捕获目标节点在单元路径下与其他类型节点之间的交互关系;最后,通过自注意力机制探索语义之间的相互性,融合来自不同元路径的特征。在ACM、IMDB和DBLP数据集上进行广泛实验,并与当前主流算法进行对比分析。实验结果显示,节点分类任务中Macro-F1平均提高0.5%~3.5%,节点聚类任务中ARI值提高了1%~3%,证明该算法是有效、可行的。 展开更多
关键词 异构图 图嵌入 图神经网络 元路径 图卷积
下载PDF
Insider threat detection approach for tobacco industry based on heterogeneous graph embedding
4
作者 季琦 LI Wei +2 位作者 PAN Bailin XUE Hongkai QIU Xiang 《High Technology Letters》 EI CAS 2024年第2期199-210,共12页
In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,t... In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods. 展开更多
关键词 insider threat detection advanced persistent threats graph construction heterogeneous graph embedding
下载PDF
基于多信息融合的DGPMIF致病基因关联预测方法
5
作者 马金龙 翟美静 《河北工业科技》 CAS 2024年第1期27-35,共9页
为了解决利用单一生物数据无法揭示复杂的生物过程和疾病机制的问题,提出了一种多信息融合的DGPMIF致病基因预测方法。首先,构建一个具有疾病-表型、疾病-基因、蛋白质-蛋白质和基因-本体关联的异构网络,利用网络嵌入算法提取该异构网... 为了解决利用单一生物数据无法揭示复杂的生物过程和疾病机制的问题,提出了一种多信息融合的DGPMIF致病基因预测方法。首先,构建一个具有疾病-表型、疾病-基因、蛋白质-蛋白质和基因-本体关联的异构网络,利用网络嵌入算法提取该异构网络中节点的低维向量表示,同时结合网络拓扑算法提取网络结构特征。其次,利用余弦相似性算法衡量节点向量的相似性,预测疾病与基因之间的关系。最后,通过对特定疾病的案例进行研究,并与经典致病基因预测方法进行对比,验证DGPMIF方法的有效性。结果表明:不同类型的关联数据对增强致病基因预测性能具有重要作用;经过多层次信息融合,提高了致病基因预测的预测性能。DGPMIF预测方法能够高效挖掘网络中蕴含的信息,对相关疾病基因关联的预测研究具有重要的参考价值。 展开更多
关键词 人工智能其他学科 致病基因 异构网络 信息融合 网络嵌入 网络结构特征
下载PDF
基于异构网络的企业科研合作者推荐研究
6
作者 杨娜 刘钱 余小菊 《科技管理研究》 2024年第14期234-242,共9页
旨在研究产学研领域中面向企业的科研合作者推荐问题,以改进现有方法中仅使用专利、合作关系等单一信息的现状,以及避免在可移植性方面的局限性。提出基于异构网络向企业推荐潜在科研合作人员的方法:首先引入异构网络,融合企业、科研人... 旨在研究产学研领域中面向企业的科研合作者推荐问题,以改进现有方法中仅使用专利、合作关系等单一信息的现状,以及避免在可移植性方面的局限性。提出基于异构网络向企业推荐潜在科研合作人员的方法:首先引入异构网络,融合企业、科研人员、专利和论文等多元节点信息,以及企业技术需求和社交关联等多元关联信息;其次分析不同语义关系下连通企业与科研合作者的元路径,并以各元路径下的路径实例为语料,运用SkipGram模型进行网络嵌入训练,用向量余弦相似度表示节点之间的关联程度;最后融合不同路径下的推荐结果,得到最终的科研合作者推荐列表。基于Scholarmate的实例验证表明,元路径1和路径3的推荐效果最好,而综合各条元路径时模型在准确率和特异度指标上表现更好;此外,在符合企业实际情况的不同推荐列表长度下,模型各指标变化不大且处于理想水平,且综合多条元路径时模型的鲁棒性更强。此方法可为企业解决科技人才获取难的问题提供解决方案,并为企业的技术需求分析和产学研领域的社交关系分析提供思路参考。 展开更多
关键词 科研合作者推荐 潜在科研合作人员 异构网络 元路径 网络嵌入 Skig-Gram模型
下载PDF
Label-Aware Chinese Event Detection with Heterogeneous Graph Attention Network
7
作者 崔诗尧 郁博文 +3 位作者 从鑫 柳厅文 谭庆丰 时金桥 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第1期227-242,共16页
Event detection(ED)seeks to recognize event triggers and classify them into the predefined event types.Chinese ED is formulated as a character-level task owing to the uncertain word boundaries.Prior methods try to inc... Event detection(ED)seeks to recognize event triggers and classify them into the predefined event types.Chinese ED is formulated as a character-level task owing to the uncertain word boundaries.Prior methods try to incorpo-rate word-level information into characters to enhance their semantics.However,they experience two problems.First,they fail to incorporate word-level information into each character the word encompasses,causing the insufficient word-charac-ter interaction problem.Second,they struggle to distinguish events of similar types with limited annotated instances,which is called the event confusing problem.This paper proposes a novel model named Label-Aware Heterogeneous Graph Attention Network(L-HGAT)to address these two problems.Specifically,we first build a heterogeneous graph of two node types and three edge types to maximally preserve word-character interactions,and then deploy a heterogeneous graph attention network to enhance the semantic propagation between characters and words.Furthermore,we design a pushing-away game to enlarge the predicting gap between the ground-truth event type and its confusing counterpart for each character.Experimental results show that our L-HGAT model consistently achieves superior performance over prior competitive methods. 展开更多
关键词 Chinese event detection heterogeneous graph attention network(HGAT) label embedding
原文传递
基于异构图嵌入的恶意软件检测
8
作者 黄青 《电子设计工程》 2024年第7期92-96,共5页
和同构图相比,异构图包含多种节点类型和关系类型,可以表征更丰富更复杂的内容。文中提出了一种基于异构图嵌入的恶意软件检测方法,从威胁情报平台得到恶意样本的基本信息和行为报告,提取出报告中的函数调用行为、文件行为和注册表行为... 和同构图相比,异构图包含多种节点类型和关系类型,可以表征更丰富更复杂的内容。文中提出了一种基于异构图嵌入的恶意软件检测方法,从威胁情报平台得到恶意样本的基本信息和行为报告,提取出报告中的函数调用行为、文件行为和注册表行为,构造出包含软件及其动静态特征的异构图;根据设计的元模式在图上随机游走生成语料库,通过嵌入模型得到特征向量;将嵌入降维后的特征向量送入分类器进行分类完成检测。实验筛选了4902个样本用于验证方法效果,结果表明提出的方法检测准确率达到99.1%,可以有效检测恶意软件。 展开更多
关键词 恶意软件检测 异构图 图嵌入 图神经网络
下载PDF
Heterogeneous Network Embedding: A Survey
9
作者 Sufen Zhao Rong Peng +1 位作者 Po Hu Liansheng Tan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期83-130,共48页
Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the stru... Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE. 展开更多
关键词 heterogeneous information networks representation learning heterogeneous network embedding graph neural networks machine learning
下载PDF
Adversarial Heterogeneous Network Embedding with Metapath Attention Mechanism 被引量:4
10
作者 Chun-Yang Ruan Ye Wang +2 位作者 Jiangang Ma Yanchun Zhang Xin-Tian Chen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2019年第6期1217-1229,共13页
Heterogeneous information network (HIN)-structured data provide an effective model for practical purposes in real world. Network embedding is fundamental for supporting the network-based analysis and prediction tasks.... Heterogeneous information network (HIN)-structured data provide an effective model for practical purposes in real world. Network embedding is fundamental for supporting the network-based analysis and prediction tasks. Methods of network embedding that are currently popular normally fail to effectively preserve the semantics of HIN. In this study, we propose AGA2Vec, a generative adversarial model for HIN embedding that uses attention mechanisms and meta-paths. To capture the semantic information from multi-typed entities and relations in HIN, we develop a weighted meta-path strategy to preserve the proximity of HIN. We then use an autoencoder and a generative adversarial model to obtain robust representations of HIN. The results of experiments on several real-world datasets show that the proposed approach outperforms state-of-the-art approaches for HIN embedding. 展开更多
关键词 heterogeneous information NETWORK NETWORK embedding ATTENTION MECHANISM GENERATIVE adversarial NETWORK
原文传递
Relational Topology-based Heterogeneous Network Embedding for Predicting Drug-Target Interactions
11
作者 Linlin Zhang Chunping Ouyang +2 位作者 Fuyu Hu Yongbin Liu Zheng Gao 《Data Intelligence》 EI 2023年第2期475-493,共19页
Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods ... Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods for drug-target interaction(DTI)identification remain either time consuming or heavily dependent on domain expertise.Therefore,various computational models have been proposed to predict possible interactions between drugs and target proteins.However,most prediction methods do not consider the topological structures characteristics of the relationship.In this paper,we propose a relational topologybased heterogeneous network embedding method to predict drug-target interactions,abbreviated as RTHNE_DTI.We first construct a heterogeneous information network based on the interaction between different types of nodes,to enhance the ability of association discovery by fully considering the topology of the network.Then drug and target protein nodes can be represented by the other types of nodes.According to the different topological structure of the relationship between the nodes,we divide the relationship in the heterogeneous network into two categories and model them separately.Extensive experiments on the realworld drug datasets,RTHNE_DTI produces high efficiency and outperforms other state-of-the-art methods.RTHNE_DTI can be further used to predict the interaction between unknown interaction drug-target pairs. 展开更多
关键词 Link prediction heterogeneous information network Drug-target interaction Network embedding Feature representation
原文传递
异质资本的多维嵌入与价值共生--国企混改的组织生态学 被引量:3
12
作者 贺勇 李世辉 《会计研究》 CSSCI 北大核心 2022年第7期46-57,共12页
国企混改具有资本动员的属性,对促进我国经济高质量发展和共同富裕具有重要作用。本文视混改企业为一个资本生态系统,从生态位、组织惯性、合法性与组织同形角度对国企混改中的资本异质性及股东冲突特征、嵌入机制与价值共生路径等进行... 国企混改具有资本动员的属性,对促进我国经济高质量发展和共同富裕具有重要作用。本文视混改企业为一个资本生态系统,从生态位、组织惯性、合法性与组织同形角度对国企混改中的资本异质性及股东冲突特征、嵌入机制与价值共生路径等进行了组织生态学建构。国企混改中的国有资本与非国有资本天然存在的目标、地位、资源和效率异质性极易引发股东在任务职责、发展理念、财务行为与治理模式上的冲突,从而导致价值共毁。本文论证了结构、认知、文化、政治等多维度嵌入机制是混改企业异质资本价值共生的实现路径,而异质资本价值共生在资本生态系统中的合法性溢出,推动了组织的竞争同形与制度同形。本文对规范和引导资本健康发展有一定参考意义。 展开更多
关键词 国企混改 异质资本 组织生态 嵌入机制 资本价值共生 组织同形
原文传递
聚合高阶邻居节点的异构图神经网络模型研究
13
作者 谭鑫媛 裴颂文 《小型微型计算机系统》 CSCD 北大核心 2023年第9期1954-1960,共7页
降低异构图的语义和结构信息至低维空间,是解决异构图数据难以高效输入机器学习算法的关键问题.然而,现有的异构图神经网络选择忽视高阶邻居节点,避免学习复杂的结构信息.因此,本文提出一种聚合高阶邻居节点的异构图神经网络模型(HONG)... 降低异构图的语义和结构信息至低维空间,是解决异构图数据难以高效输入机器学习算法的关键问题.然而,现有的异构图神经网络选择忽视高阶邻居节点,避免学习复杂的结构信息.因此,本文提出一种聚合高阶邻居节点的异构图神经网络模型(HONG).首先提出了基于元路径的高阶邻居子图和面向异构图的池化层HetRepPool,采用GCN学习复杂的结构信息;其次采用HAN学习基于元路径的语义信息;最后通过注意力机制得到节点的嵌入表示,实现了异构图嵌入目的.实验结果表明,HONG与其他图神经网络(GCN、GAT、GraphSAGE、HetGNN、HAN、GAHNE)相比,对于异构图节点分类任务,Micro F1平均提升了3.88%,Macro F1平均提升了4.13%;对于异构图节点聚类任务,ARI平均提升了12.66%,NMI平均提升了12.02%. 展开更多
关键词 图神经网络 异构图 图嵌入 图池化
下载PDF
一种异质图的Lorentz嵌入模型
14
作者 苏晓萍 查英华 曲鸿博 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第1期146-153,共8页
异质图嵌入的目标是用低维稠密向量表示原网络的拓扑结构和节点属性信息。为提高异质图嵌入质量、减少失真,提出了一种将异质图嵌入到基于Lorentz模型的双曲空间中的方法。该方法采用元路径约束的随机游走进行节点关系和语义的发现,模... 异质图嵌入的目标是用低维稠密向量表示原网络的拓扑结构和节点属性信息。为提高异质图嵌入质量、减少失真,提出了一种将异质图嵌入到基于Lorentz模型的双曲空间中的方法。该方法采用元路径约束的随机游走进行节点关系和语义的发现,模型基于负采样的极大似然为目标函数,使目标节点与邻居更相近,而远离非邻居节点,优化方法不同于欧式空间的黎曼梯度下降;在引文网上将所提算法与4种基准图嵌入算法进行比较,实验证明该方法不但获得了优于其他基准算法的预测精度,而且还保留了可解释的图的层次结构。双曲嵌入为异质图的研究提供了一种新的思路,能够为异质图的下游任务提供更高质量的嵌入结果。 展开更多
关键词 异质图 双曲空间 链路预测 Lorentz模型 节点嵌入
下载PDF
Attention-Aware Heterogeneous Graph Neural Network 被引量:3
15
作者 Jintao Zhang Quan Xu 《Big Data Mining and Analytics》 EI 2021年第4期233-241,共9页
As a powerful tool for elucidating the embedding representation of graph-structured data,Graph Neural Networks(GNNs),which are a series of powerful tools built on homogeneous networks,have been widely used in various ... As a powerful tool for elucidating the embedding representation of graph-structured data,Graph Neural Networks(GNNs),which are a series of powerful tools built on homogeneous networks,have been widely used in various data mining tasks.It is a huge challenge to apply a GNN to an embedding Heterogeneous Information Network(HIN).The main reason for this challenge is that HINs contain many different types of nodes and different types of relationships between nodes.HIN contains rich semantic and structural information,which requires a specially designed graph neural network.However,the existing HIN-based graph neural network models rarely consider the interactive information hidden between the meta-paths of HIN in the poor embedding of nodes in the HIN.In this paper,we propose an Attention-aware Heterogeneous graph Neural Network(AHNN)model to effectively extract useful information from HIN and use it to learn the embedding representation of nodes.Specifically,we first use node-level attention to aggregate and update the embedding representation of nodes,and then concatenate the embedding representation of the nodes on different meta-paths.Finally,the semantic-level neural network is proposed to extract the feature interaction relationships on different meta-paths and learn the final embedding of nodes.Experimental results on three widely used datasets showed that the AHNN model could significantly outperform the state-of-the-art models. 展开更多
关键词 Graph Neural Network(GNN) heterogeneous Information Network(HIN) embedding
原文传递
多角体包埋异源蛋白杆状病毒表达系统的构建 被引量:3
16
作者 郭建军 袁林 +2 位作者 曾静 魏国汶 杨一兵 《安徽农业科学》 CAS 2016年第2期184-187,共4页
[目的]探索多角体病毒的包装特性,构建能形成多角体包裹外源蛋白的polyh+Bac-to-Bac表达系统。[方法]通过酶切连接的方式,将4个元件片段:作为标记的绿色荧光基因EGFP,Bm CPV自身的多角体蛋白基因,用于基因表达的H1信号肽柔性连接肽,插... [目的]探索多角体病毒的包装特性,构建能形成多角体包裹外源蛋白的polyh+Bac-to-Bac表达系统。[方法]通过酶切连接的方式,将4个元件片段:作为标记的绿色荧光基因EGFP,Bm CPV自身的多角体蛋白基因,用于基因表达的H1信号肽柔性连接肽,插入到质粒Fast Bac Dual中,利用Ac MNPV Bac-to-Bac系统,得到整合表达重组Bacmid:Ac-polyh/EGFP。将其感染Sf9细胞后,检测蛋白表达情况。[结果]利用该系统构建了一种能大量表达绿色荧光蛋白(EGFP)和能在胞质形成多角体的重组病毒v Bm Bac(polyh+)-EGFP。感染的Sf9细胞在荧光显微镜下观察发现EGFP与多角体可以在同一细胞中同时表达;从感染的Sf9细胞中收集纯化多角体,观察到多角体能被激发出绿色荧光,进一步利用Western blot证实多角体中含有EGFP。[结论]该表达系统为解决活性蛋白长期保存提供了新方法,同时拓宽了杆状病毒在开发含有毒素蛋白的新型生物杀虫剂和新型疫苗的转运载体等领域的应用前景。 展开更多
关键词 杆状病毒 多角体 异源包埋
下载PDF
BmCPV多角体蛋白对异源蛋白的包埋 被引量:2
17
作者 张轶岭 孟祥坤 +3 位作者 朱越雄 曹广力 薛仁宇 贡成良 《蚕业科学》 CAS CSCD 北大核心 2011年第4期676-681,共6页
为了解家蚕质型多角体病毒(BmCPV)的多角体蛋白对异源蛋白的包埋作用,将BmCPV的多角体蛋白基因克隆至昆虫细胞表达载体pIZT/V5-His,转染家蚕卵巢培养细胞(BmN)后通过吉欧霉素(zeocin)筛选获得稳定表达多角体蛋白的细胞株。倒置荧光显微... 为了解家蚕质型多角体病毒(BmCPV)的多角体蛋白对异源蛋白的包埋作用,将BmCPV的多角体蛋白基因克隆至昆虫细胞表达载体pIZT/V5-His,转染家蚕卵巢培养细胞(BmN)后通过吉欧霉素(zeocin)筛选获得稳定表达多角体蛋白的细胞株。倒置荧光显微镜观察发现,转化BmN细胞有轻度的病理变化,细胞质中有呈绿色荧光的多角体蛋白结晶,但从转化BmN细胞中纯化的多角体无明显的绿色荧光。以修饰型线性化家蚕杆状病毒BmPAK6感染稳定转化BmN细胞,96 h后纯化多角体,回复感染显示多角体裂解液能感染家蚕BmN细胞,表明BmCPV多角体蛋白能包埋BmPAK6。纯化的多角体及多角体裂解液均能用X-gal显色,表明BmPAK6表达的β-半乳糖苷酶也能被BmCPV的多角体蛋白包埋。研究结果可为获得具有多角体的重组杆状病毒以及开发利用质型多角体蛋白包埋异源蛋白的功能提供新的技术途径。 展开更多
关键词 家蚕质型多角体病毒 多角体 杆状病毒 异源包埋
下载PDF
Knowledge Driven Paper Recommendation Using Heterogeneous Network Embedding Method
18
作者 Irfan Ahmed Zubair Ahmed Kalhoro 《Journal of Computer and Communications》 2018年第12期157-170,共14页
We search a variety of things over the Internet in our daily lives, and numerous search engines are available to get us more relevant results. With the rapid technological advancement, the internet has become a major ... We search a variety of things over the Internet in our daily lives, and numerous search engines are available to get us more relevant results. With the rapid technological advancement, the internet has become a major source of obtaining information. Further, the advent of the Web2.0 era has led to an increased interaction between the user and the website. It has become challenging to provide information to users as per their interests. Because of copyright restrictions, most of existing research studies are confronting the lack of availability of the content of candidates recommending articles. The content of such articles is not always available freely and hence leads to inadequate recommendation results. Moreover, various research studies base recommendation on user profiles. Therefore, their recommendation needs a significant number of registered users in the system. In recent years, research work proves that Knowledge graphs have yielded better in generating quality recommendation results and alleviating sparsity and cold start issues. Network embedding techniques try to learn high quality feature vectors automatically from network structures, enabling vector-based measurers of node relatedness. Keeping the strength of Network embedding techniques, the proposed citation-based recommendation approach makes use of heterogeneous network embedding in generating recommendation results. The novelty of this paper is in exploiting the performance of a network embedding approach i.e., matapath2vec to generate paper recommendations. Unlike existing approaches, the proposed method has the capability of learning low-dimensional latent representation of nodes (i.e., research papers) in a network. We apply metapath2vec on a knowledge network built by the ACL Anthology Network (all about NLP) and use the node relatedness to generate item (research article) recommendations. 展开更多
关键词 Network embedding heterogeneous Representation LEARNING Paper-Citation Relations RECOMMENDER System LEARNING LATENT Representations
下载PDF
DEM:Deep Entity Matching Across Heterogeneous Information Networks
19
作者 Chao Kong Bao-Xiang Chen Li-Ping Zhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第4期739-750,共12页
Heterogeneous information networks,which consist of multi-typed vertices representing objects and multi-typed edges representing relations between objects,are ubiquitous in the real world.In this paper,we study the pr... Heterogeneous information networks,which consist of multi-typed vertices representing objects and multi-typed edges representing relations between objects,are ubiquitous in the real world.In this paper,we study the problem of entity matching for heterogeneous information networks based on distributed network embedding and multi-layer perceptron with a highway network,and we propose a new method named DEM short for Deep Entity Matching.In contrast to the traditional entity matching methods,DEM utilizes the multi-layer perceptron with a highway network to explore the hidden relations to improve the performance of matching.Importantly,we incorporate DEM with the network embedding methodology,enabling highly efficient computing in a vectorized manner.DEM's generic modeling of both the network structure and the entity attributes enables it to model various heterogeneous information networks flexibly.To illustrate its functionality,we apply the DEM algorithm to two real-world entity matching applications:user linkage under the social network analysis scenario that predicts the same or matched users in different social platforms and record linkage that predicts the same or matched records in different citation networks.Extensive experiments on real-world datasets demonstrate DEM's effectiveness and rationality. 展开更多
关键词 heterogeneous information NETWORK ENTITY matching NETWORK embedding MULTI-LAYER PERCEPTRON
原文传递
Finding Communities by Decomposing and Embedding Heterogeneous Information Network
20
作者 Yue Kou De-Rong Shen +2 位作者 Dong Li Tie-Zheng Nie Ge Yu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第2期320-337,共18页
Community discovery is an important task in social network analysis.However,most existing methods for community discovery rely on the topological structure alone.These methods ignore the rich information available in ... Community discovery is an important task in social network analysis.However,most existing methods for community discovery rely on the topological structure alone.These methods ignore the rich information available in the content data.In order to solve this issue,in this paper,we present a community discovery method based on heterogeneous information network decomposition and embedding.Unlike traditional methods,our method takes into account topology,node content and edge content,which can supply abundant evidence for community discovery.First,an embedding-based similarity evaluation method is proposed,which decomposes the heterogeneous information network into several subnetworks,and extracts their potential deep representation to evaluate the similarities between nodes.Second,a bottom-up community discovery algorithm is proposed.Via leader nodes selection,initial community generation,and community expansion,communities can be found more efficiently.Third,some incremental maintenance strategies for the changes of networks are proposed.We conduct experimental studies based on three real-world social networks.Experiments demonstrate the effectiveness and the efficiency of our proposed method.Compared with the traditional methods,our method improves normalized mutual information(NMI)and the modularity by an average of 12%and 37%respectively. 展开更多
关键词 COMMUNITY DISCOVERY heterogeneous information network decomposition embedding INCREMENTAL maintenance
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部