Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate...Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate. Not much data is available on the soil stabilization capacity of plants. This study was conducted to investigate the wind-induced sand displacement around plants in relation to their biomass. Sand displacement is examined in relation to the biomass allocation pattern of three different plant species. A new method was developed to experimentally investigate plant sand-binding capacity. The relationship between sand displacement and plant biomass was not linear. Apart from the amount of biomass, species-specific plant characters like the biomass allocation pattern and plant structure may be very important in determining the sand-binding capacity.展开更多
Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after e...Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.展开更多
Objective: To investigate the effect of total flavonoids of Hedysarum polybotry on the proliferation, cell cycle, and expressions of p21Ras and proliferating cell nuclear antigen (PCNA) gene in erythroleukemia cell...Objective: To investigate the effect of total flavonoids of Hedysarum polybotry on the proliferation, cell cycle, and expressions of p21Ras and proliferating cell nuclear antigen (PCNA) gene in erythroleukemia cell line K562. Methods: The effect of total flavonoids of Hedysarum po/ybotry on K562 cell line survival was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction assay. The time- and dose- dependent manner was also observed. The cell cycle and apoptosis were analyzed with flow cytometry (FCM). The immunocytochemistry method was applied to quantitatively analyze the effects of flavonoids of Hedysarum polybotry on changes p21Ras and PCNA gene expressions. Results: Flavonoids of Hedysarum polybotry (20-100 g/mL) significantly inhibited the proliferation of K562 cells in a time- and dose-dependent manner. After K562 cells were cultured for 48 h, total flavonoids of Hedysarum polybotry had no significant effect on the apoptosis of K562 cells but showed significantly inhibition (P〈0.01), indicating that total flavonoids of Hedysarum polybotry could induce K562 cells arrested at Go/G1 and G2/M phases. Compared with the control group, p21Ras and PCNA gene expressions were decreased significantly in K562 cells treated with total flavonoids of Hedysarum polybotry (40 and 80 μg/mL, respectively) for 48 h. Conclusion: The inhibitory effect on proliferation of K562 cells was observed in the groups treated with flavonoids of Hedysarum polybotry, which might be related to cells arresting.展开更多
To study the chemical constituents of Hedysarum gmelinii. Methods Theconstituents were separated and purified by different methods of chromatography, and theirstructures were elucidated by DR, MS and NMR. Results Eigh...To study the chemical constituents of Hedysarum gmelinii. Methods Theconstituents were separated and purified by different methods of chromatography, and theirstructures were elucidated by DR, MS and NMR. Results Eight compounds were isolated from Hedysarumgmelinii, including three triteipenoids, two flavonoids and two other compounds. Their structureswere identified as squasapogenol (1), soyasapogenol (2), lupeol (3), 3, 9-dihydroxy coumestan (4),3-hydroxy-9-me-thoxy pterocarpan (5), β-sitosterol (6), palmatic acid (7), and hexadecanoic acid 2,3-dihydroxypropyl ester (8). Conclusion All the compounds have been isolated from this plant forthe first time. Compounds 1 — 4 and 8 were obtained from this genus for the first time. The NMRdata of 1 are reported for the first time.展开更多
Response patters were investigated for seedlings of Hedysarum mongolicum, a dominant shrub in Maowusu sandland, to the simulated precipitation change by artificially controlling water supply at four levels. Plant ...Response patters were investigated for seedlings of Hedysarum mongolicum, a dominant shrub in Maowusu sandland, to the simulated precipitation change by artificially controlling water supply at four levels. Plant growth characters, in terms of branch number and length, leaf number and area, and biomass, increased while water supply increased. However, the effect of water supply on leaf photosynthetic rate was not significant. Root/shoot biomass ratio significantly decreased with the increase of water supply, which was considered adaptive distribution of biomass investments in the different water supply. Water supply obviously affected branching patter. Branch section number, branch number and length of the same section enhanced as water supply increased. Branch number and length were clearly positive correlation with total and aboveground biomass in four water supply treatments. Branch character fully showed plant growth.展开更多
Pollen limitation of plant reproduction occurs across Angiosperms, particularly those in patched habitats We investigated the, relationship between pollen limitation and patch variables (patch size, visitation freque...Pollen limitation of plant reproduction occurs across Angiosperms, particularly those in patched habitats We investigated the, relationship between pollen limitation and patch variables (patch size, visitation frequency) in the desert plant Hedysarum scoparium (Fabaceae), which is an important xerophyte in the arid and semi-arid regions of Northwest China and can grow well as a pioneer plant in shifting sand dunes. We observed insect visitation to H. scoparium over two flowering seasons and estimated pollen limitation using fruit set and seed production. Our results indicate that fruit set and seed production increased significantly with pollen supplementation compared with open pollination. Hedysarum scoparium was pollinated by over 8 species of bees, with 88.4% of visits made by introduced honeybees (Apis mellifera). Bee visitation varied significantly among the patches of habitats, but not associated with patch size of habitat. In general, pollen limitation occurred more strongly during fruit set than during seed production. The patches that received higher rates of pollinator visits were less pollen limited for fruit set. Pollen limitation for seed production, however, was not associated with pollinator visitation frequency. We conclude that pollen limitation in H. scoparium was caused by more than one reason, not just pollinator visits.展开更多
The desert plant Hedysarum scoparium uses leaflets and rachises as its photosynthetic organs. The abundance of leaflets was lower under unfavorable environmental conditions and higher with improved water conditions. T...The desert plant Hedysarum scoparium uses leaflets and rachises as its photosynthetic organs. The abundance of leaflets was lower under unfavorable environmental conditions and higher with improved water conditions. To examine the characteristics associated with the adaptation of H. scoparium to its environment, we selected plants with both compound leaves and rachis without leaflets to study the anatomical structures and gas exchange characteristics of the two organs. The results show that the water storage tissues in rachises were more developed compared with the leaflets. The diurnal courses of the net photosynthetic rate for the rachis and the leaflet were both in a bimodal pattern. Meanwhile, both two peak values of the rachis were significantly higher than those of the leaflet. The daily average transpiration rate was significantly higher in the rachis than in the leaflet in order to lower the temperature of the rachises. It was concluded that under desert drought conditions, the leaflets of H. scoparium were partially or completely degraded to reduce the transpiration area as an adaptive response to water deficit, and only the rachises were retained as photosynthetic organ. The rachises were found to be better suited to a desert habitat than the leaflets.展开更多
Theory suggests that with sufficient environmental variation, pollen limitation might be observed at some places or times, and resource limitation at others, but there are no empirical data about the effect of seasona...Theory suggests that with sufficient environmental variation, pollen limitation might be observed at some places or times, and resource limitation at others, but there are no empirical data about the effect of seasonal change on the variation of pollen limitation and resource limitation within a flowering season. In this study, we examined pollen and resource limi- tation by comparing fruit set and seed production in natural- and hand-pollinated Hedysarum scoparium flowers in the middle reaches of the Hexi Corridor region, China, in 2010. We also described a role for the first substantial autumn rainfall in mediating a shift between pollen and resource limitation in H. scoparium, but did not analyze this experimentally Our results indicated that H. scoparium was resource limited at peak flowering during the summer, and was pollen limited at peak flowering during the autumn. The seasonal change (summer to autumn) mediated the shift between pollen and resource limitations in H. scoparium. The shift timing depended on the date of the first autumn rainfall in 2010. Changes in the first substantial rainfall in autumn may affect fruiting of H. scoparium, thus affecting population persistence of this species and development/structure of the local ecosystem if such conditions persist.展开更多
Hedysarum zundukii Peschkova is one of the Fabaceae endemics of the flora of the Lake Baikal west shore. Because of its very poor renewal by seed production and seedling appearance biotechnological method, clonal micr...Hedysarum zundukii Peschkova is one of the Fabaceae endemics of the flora of the Lake Baikal west shore. Because of its very poor renewal by seed production and seedling appearance biotechnological method, clonal micropropagation has been elaborated in order to improve its chances of conservation. A protocol for clonal micropropagation, including introduction, propagation, rooting, acclimatization, field cultivation and prolonged cold storage has been elaborated. Half-dose MS salts, benzylaminopurine 1 mg/dm3 and 2% sucrose were optimal components of the medium for clonal micropropagation. Sucrose was the superior carbon source by comparison with glucose and maltose. It was found that some agar brands were better for propagation, whereas other ones were better for rooting. Transplants produced from acclimatized plantlets vegetated successfully in field conditions, but did not survived in Irkutsk after wintering. However, the same transplants planted into their natural population survived successfully. Micropropagated plantlets retained their ability for propagation in vitro after 10 -12 months of cold storage at 4℃ with illumination. It was concluded that clonal micropropagation may be used as an additional means for conservation of H. zundukii.展开更多
The root of Hedysarum multijugum(RHM) is recorded as a folk herbal medicine in China and is sometimes used as a substitute for Hedysari Radix, which is a famous traditional Chinese medicine derived from the roots of...The root of Hedysarum multijugum(RHM) is recorded as a folk herbal medicine in China and is sometimes used as a substitute for Hedysari Radix, which is a famous traditional Chinese medicine derived from the roots of Hedysarum polybotrys. In the present study, a sensible, reliable, and reproducible HPLC-DAD fingerprint analysis method for RHM was developed and then subsequently applied to analyze RHM samples from different origins. The chemical constituents of the RHM samples were generally consistent, although it was slightly affected by the local environment of the plant. In addition, the chemical constituency of RHM was shown to be significantly different from that of Hedysari Radix, suggesting that RHM is not suitable as a substitute for Hedysari Radix, at least from the chemical point of view.展开更多
文摘Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate. Not much data is available on the soil stabilization capacity of plants. This study was conducted to investigate the wind-induced sand displacement around plants in relation to their biomass. Sand displacement is examined in relation to the biomass allocation pattern of three different plant species. A new method was developed to experimentally investigate plant sand-binding capacity. The relationship between sand displacement and plant biomass was not linear. Apart from the amount of biomass, species-specific plant characters like the biomass allocation pattern and plant structure may be very important in determining the sand-binding capacity.
文摘Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.
基金Supported by the Natural Science Foundation for Middle-AgedYoung Scientist of Gansu Province(No.YS031-A21-015)
文摘Objective: To investigate the effect of total flavonoids of Hedysarum polybotry on the proliferation, cell cycle, and expressions of p21Ras and proliferating cell nuclear antigen (PCNA) gene in erythroleukemia cell line K562. Methods: The effect of total flavonoids of Hedysarum po/ybotry on K562 cell line survival was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction assay. The time- and dose- dependent manner was also observed. The cell cycle and apoptosis were analyzed with flow cytometry (FCM). The immunocytochemistry method was applied to quantitatively analyze the effects of flavonoids of Hedysarum polybotry on changes p21Ras and PCNA gene expressions. Results: Flavonoids of Hedysarum polybotry (20-100 g/mL) significantly inhibited the proliferation of K562 cells in a time- and dose-dependent manner. After K562 cells were cultured for 48 h, total flavonoids of Hedysarum polybotry had no significant effect on the apoptosis of K562 cells but showed significantly inhibition (P〈0.01), indicating that total flavonoids of Hedysarum polybotry could induce K562 cells arrested at Go/G1 and G2/M phases. Compared with the control group, p21Ras and PCNA gene expressions were decreased significantly in K562 cells treated with total flavonoids of Hedysarum polybotry (40 and 80 μg/mL, respectively) for 48 h. Conclusion: The inhibitory effect on proliferation of K562 cells was observed in the groups treated with flavonoids of Hedysarum polybotry, which might be related to cells arresting.
基金National Natural Science Foundation of China (20432030)
文摘To study the chemical constituents of Hedysarum gmelinii. Methods Theconstituents were separated and purified by different methods of chromatography, and theirstructures were elucidated by DR, MS and NMR. Results Eight compounds were isolated from Hedysarumgmelinii, including three triteipenoids, two flavonoids and two other compounds. Their structureswere identified as squasapogenol (1), soyasapogenol (2), lupeol (3), 3, 9-dihydroxy coumestan (4),3-hydroxy-9-me-thoxy pterocarpan (5), β-sitosterol (6), palmatic acid (7), and hexadecanoic acid 2,3-dihydroxypropyl ester (8). Conclusion All the compounds have been isolated from this plant forthe first time. Compounds 1 — 4 and 8 were obtained from this genus for the first time. The NMRdata of 1 are reported for the first time.
文摘Response patters were investigated for seedlings of Hedysarum mongolicum, a dominant shrub in Maowusu sandland, to the simulated precipitation change by artificially controlling water supply at four levels. Plant growth characters, in terms of branch number and length, leaf number and area, and biomass, increased while water supply increased. However, the effect of water supply on leaf photosynthetic rate was not significant. Root/shoot biomass ratio significantly decreased with the increase of water supply, which was considered adaptive distribution of biomass investments in the different water supply. Water supply obviously affected branching patter. Branch section number, branch number and length of the same section enhanced as water supply increased. Branch number and length were clearly positive correlation with total and aboveground biomass in four water supply treatments. Branch character fully showed plant growth.
基金funded by the National Basic Research Program of China (2009CB421303)
文摘Pollen limitation of plant reproduction occurs across Angiosperms, particularly those in patched habitats We investigated the, relationship between pollen limitation and patch variables (patch size, visitation frequency) in the desert plant Hedysarum scoparium (Fabaceae), which is an important xerophyte in the arid and semi-arid regions of Northwest China and can grow well as a pioneer plant in shifting sand dunes. We observed insect visitation to H. scoparium over two flowering seasons and estimated pollen limitation using fruit set and seed production. Our results indicate that fruit set and seed production increased significantly with pollen supplementation compared with open pollination. Hedysarum scoparium was pollinated by over 8 species of bees, with 88.4% of visits made by introduced honeybees (Apis mellifera). Bee visitation varied significantly among the patches of habitats, but not associated with patch size of habitat. In general, pollen limitation occurred more strongly during fruit set than during seed production. The patches that received higher rates of pollinator visits were less pollen limited for fruit set. Pollen limitation for seed production, however, was not associated with pollinator visitation frequency. We conclude that pollen limitation in H. scoparium was caused by more than one reason, not just pollinator visits.
基金supported by the National Natu-ral Sciences Foundation of China (40771005 30870382)+1 种基金the CAS (Chinese Academy of Sciences) Action Plan for West Development Project (KZCX2-XB2-04-01KZCX2-XB2-09-03)
文摘The desert plant Hedysarum scoparium uses leaflets and rachises as its photosynthetic organs. The abundance of leaflets was lower under unfavorable environmental conditions and higher with improved water conditions. To examine the characteristics associated with the adaptation of H. scoparium to its environment, we selected plants with both compound leaves and rachis without leaflets to study the anatomical structures and gas exchange characteristics of the two organs. The results show that the water storage tissues in rachises were more developed compared with the leaflets. The diurnal courses of the net photosynthetic rate for the rachis and the leaflet were both in a bimodal pattern. Meanwhile, both two peak values of the rachis were significantly higher than those of the leaflet. The daily average transpiration rate was significantly higher in the rachis than in the leaflet in order to lower the temperature of the rachises. It was concluded that under desert drought conditions, the leaflets of H. scoparium were partially or completely degraded to reduce the transpiration area as an adaptive response to water deficit, and only the rachises were retained as photosynthetic organ. The rachises were found to be better suited to a desert habitat than the leaflets.
基金funded by the National Natural Science Foundation of China (31400392,91025002,31370466)the Foundation for Excellent Youth Scholars of CAREERI,CAS (Y451111001)a General Financial Grant from the China Postdoctoral Science Foundation (2014M552516)
文摘Theory suggests that with sufficient environmental variation, pollen limitation might be observed at some places or times, and resource limitation at others, but there are no empirical data about the effect of seasonal change on the variation of pollen limitation and resource limitation within a flowering season. In this study, we examined pollen and resource limi- tation by comparing fruit set and seed production in natural- and hand-pollinated Hedysarum scoparium flowers in the middle reaches of the Hexi Corridor region, China, in 2010. We also described a role for the first substantial autumn rainfall in mediating a shift between pollen and resource limitation in H. scoparium, but did not analyze this experimentally Our results indicated that H. scoparium was resource limited at peak flowering during the summer, and was pollen limited at peak flowering during the autumn. The seasonal change (summer to autumn) mediated the shift between pollen and resource limitations in H. scoparium. The shift timing depended on the date of the first autumn rainfall in 2010. Changes in the first substantial rainfall in autumn may affect fruiting of H. scoparium, thus affecting population persistence of this species and development/structure of the local ecosystem if such conditions persist.
文摘Hedysarum zundukii Peschkova is one of the Fabaceae endemics of the flora of the Lake Baikal west shore. Because of its very poor renewal by seed production and seedling appearance biotechnological method, clonal micropropagation has been elaborated in order to improve its chances of conservation. A protocol for clonal micropropagation, including introduction, propagation, rooting, acclimatization, field cultivation and prolonged cold storage has been elaborated. Half-dose MS salts, benzylaminopurine 1 mg/dm3 and 2% sucrose were optimal components of the medium for clonal micropropagation. Sucrose was the superior carbon source by comparison with glucose and maltose. It was found that some agar brands were better for propagation, whereas other ones were better for rooting. Transplants produced from acclimatized plantlets vegetated successfully in field conditions, but did not survived in Irkutsk after wintering. However, the same transplants planted into their natural population survived successfully. Micropropagated plantlets retained their ability for propagation in vitro after 10 -12 months of cold storage at 4℃ with illumination. It was concluded that clonal micropropagation may be used as an additional means for conservation of H. zundukii.
基金Quality Standards for Chinese Medicines of Chinese Pharmacopeia 2010 edition(Grant No.YZ-029)National Natural Science Foundation of China(Grant No.21372015)
文摘The root of Hedysarum multijugum(RHM) is recorded as a folk herbal medicine in China and is sometimes used as a substitute for Hedysari Radix, which is a famous traditional Chinese medicine derived from the roots of Hedysarum polybotrys. In the present study, a sensible, reliable, and reproducible HPLC-DAD fingerprint analysis method for RHM was developed and then subsequently applied to analyze RHM samples from different origins. The chemical constituents of the RHM samples were generally consistent, although it was slightly affected by the local environment of the plant. In addition, the chemical constituency of RHM was shown to be significantly different from that of Hedysari Radix, suggesting that RHM is not suitable as a substitute for Hedysari Radix, at least from the chemical point of view.