China is one of the most important rapeseed producing countries in the world. Effective mechanical harvesting time for decreasing harvesting loss of winter oilseed rape has been becoming a critical factor. An elite cu...China is one of the most important rapeseed producing countries in the world. Effective mechanical harvesting time for decreasing harvesting loss of winter oilseed rape has been becoming a critical factor. An elite cultivar Zhongshuang 11 (Brassica napus L.) was employed in two rounds of field experiments from 2009 to 2011. Seeds were sown with machine, three combine harvesting times namely combine harvesting A, B, and C (CHA, CHB, and CHC) were designed and manual harvesting (MH) as control was performed at maturity. The harvesting treatments were determined according to color of pod and seed in the field. Seed yield loss and quality in different treatments were evaluated. Results showed that both seed yields and harvesting losses in 2009-2010 were higher than that in 2010-2011, whereas seed oil contents in 2010-2011 were higher than that in 2009-2010. The highest yield appeared in CHB, which was significantly higher than that in MH. Furthermore, harvesting loss in CHB were 50% that in MH. Seed oil content and chlorophyll exhibited no obvious difference between CHB and MH. Economic profit analysis demonstrated that mechanical sowing/combine harvesting (MS/CH) showed an input/output ratio of 1:1.6, and it was 1:1.2 in mechanical sowing/manual harvesting (MS/MH). Labor-cost accounted for more than 70% of the total cost in MS/MH, which led to low profitability to a great extent. Our results suggested that CHB was the optimum harvesting time for winter oilseed rape along the Yangtze River.展开更多
Agricultural mechanization plays a pivotal role in the transition from subsistence to commercial agriculture, with a particular focus on labour-intensive activities like harvesting. This study assesses the operational...Agricultural mechanization plays a pivotal role in the transition from subsistence to commercial agriculture, with a particular focus on labour-intensive activities like harvesting. This study assesses the operational characteristics of the BRRI Whole Feed Combine Harvester (Model BRRI WCH2021) at the field level. Developed under the SFMRA project, the harvester’s technical performance and loss assessment were conducted during the Boro 2022 and Aman 2022 seasons in farmer fields in Bangladesh’s Rangpur region. The field efficiency of the harvester was determined to be 62.5% and 57.9% in the Boro and Aman seasons, respectively. Fuel consumption rates were recorded at 2.77 l/ha and 2.31 l/ha for the Boro and Aman seasons. The total harvesting losses, encompassing cutter bar, shatter, cylinder, and separation loss, averaged 0.56% and 0.48% in the Boro and Aman seasons, respectively. Mechanized harvesting with the BRRI Whole Feed Combine Harvester significantly reduced paddy losses by 5.81% compared to manual methods. The field evaluation results indicate the combine harvester’s satisfactory performance, highlighting its potential to alleviate labour demands during peak harvesting. The development of the BRRI WCH offers a sustainable solution for rice harvesting mechanization among progressive farmers. It paves the way for the broader adoption of advanced agricultural technology in Bangladesh.展开更多
Yield loss(Y_(Loss)) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology.Soil drying before t...Yield loss(Y_(Loss)) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology.Soil drying before the harvest of the main crop has been proposed to overcome this problem.The objective of this study was to determine the effect of soil drying during the mid-to-late grain filling stage of the main crop on grain yield of the ratoon crop in a mechanized rice ratooning system.Field experiments were conducted to compare Y_(Loss) between light(LD) and heavy(HD) soil drying treatments in Hubei province,central China in 2017 and 2018.Y_(Loss) was calculated as the percentage of yield reduction in the ratoon crop with the main crop harvested mechanically,relative to the grain yield of the ratoon crop with the main crop harvested manually.In comparison with LD,soil hardness was increased by 42.8%-84.7% in HD at the 5-20 cm soil depth at maturity of the main crop.Soil hardness at 5 and 10 cm depths reached respectively 4.05 and 7.07 kg cm^(-2) in HD.Soil drying treatment did not significantly affect the grain yield of the main crop.Under mechanical harvesting of the main crop,HD increased the grain yield of the ratoon crop by 9.4% relative to LD.Consequently,Y_(Loss) was only 3.4% in HD,in contrast to 16.3% in LD.The differences in grain yield and Y_(Loos) between the two soil drying treatments were explained mainly by panicles m^(-2),which was increased significantly by HD in the track zone of the ratoon crop compared with LD.These results suggest that heavy soil drying practice during the mid-to-late grain filling stage of the main crop is effective for reducing Y_(Loss) of the ratoon crop in a mechanized rice ratooning system.展开更多
基金supported by the Special Funding for Modern Agricultural Technical System of China (Rapeseed)the National Natural Science Foundation of China (31071372)
文摘China is one of the most important rapeseed producing countries in the world. Effective mechanical harvesting time for decreasing harvesting loss of winter oilseed rape has been becoming a critical factor. An elite cultivar Zhongshuang 11 (Brassica napus L.) was employed in two rounds of field experiments from 2009 to 2011. Seeds were sown with machine, three combine harvesting times namely combine harvesting A, B, and C (CHA, CHB, and CHC) were designed and manual harvesting (MH) as control was performed at maturity. The harvesting treatments were determined according to color of pod and seed in the field. Seed yield loss and quality in different treatments were evaluated. Results showed that both seed yields and harvesting losses in 2009-2010 were higher than that in 2010-2011, whereas seed oil contents in 2010-2011 were higher than that in 2009-2010. The highest yield appeared in CHB, which was significantly higher than that in MH. Furthermore, harvesting loss in CHB were 50% that in MH. Seed oil content and chlorophyll exhibited no obvious difference between CHB and MH. Economic profit analysis demonstrated that mechanical sowing/combine harvesting (MS/CH) showed an input/output ratio of 1:1.6, and it was 1:1.2 in mechanical sowing/manual harvesting (MS/MH). Labor-cost accounted for more than 70% of the total cost in MS/MH, which led to low profitability to a great extent. Our results suggested that CHB was the optimum harvesting time for winter oilseed rape along the Yangtze River.
文摘Agricultural mechanization plays a pivotal role in the transition from subsistence to commercial agriculture, with a particular focus on labour-intensive activities like harvesting. This study assesses the operational characteristics of the BRRI Whole Feed Combine Harvester (Model BRRI WCH2021) at the field level. Developed under the SFMRA project, the harvester’s technical performance and loss assessment were conducted during the Boro 2022 and Aman 2022 seasons in farmer fields in Bangladesh’s Rangpur region. The field efficiency of the harvester was determined to be 62.5% and 57.9% in the Boro and Aman seasons, respectively. Fuel consumption rates were recorded at 2.77 l/ha and 2.31 l/ha for the Boro and Aman seasons. The total harvesting losses, encompassing cutter bar, shatter, cylinder, and separation loss, averaged 0.56% and 0.48% in the Boro and Aman seasons, respectively. Mechanized harvesting with the BRRI Whole Feed Combine Harvester significantly reduced paddy losses by 5.81% compared to manual methods. The field evaluation results indicate the combine harvester’s satisfactory performance, highlighting its potential to alleviate labour demands during peak harvesting. The development of the BRRI WCH offers a sustainable solution for rice harvesting mechanization among progressive farmers. It paves the way for the broader adoption of advanced agricultural technology in Bangladesh.
基金supported by the Major International (Regional)Joint Research Project of National Natural Science Foundation of China (32061143038)the China Agriculture Research System(CARS-01-20)the Fundamental Research Funds for the Central Universities (2662020ZKPY015)。
文摘Yield loss(Y_(Loss)) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology.Soil drying before the harvest of the main crop has been proposed to overcome this problem.The objective of this study was to determine the effect of soil drying during the mid-to-late grain filling stage of the main crop on grain yield of the ratoon crop in a mechanized rice ratooning system.Field experiments were conducted to compare Y_(Loss) between light(LD) and heavy(HD) soil drying treatments in Hubei province,central China in 2017 and 2018.Y_(Loss) was calculated as the percentage of yield reduction in the ratoon crop with the main crop harvested mechanically,relative to the grain yield of the ratoon crop with the main crop harvested manually.In comparison with LD,soil hardness was increased by 42.8%-84.7% in HD at the 5-20 cm soil depth at maturity of the main crop.Soil hardness at 5 and 10 cm depths reached respectively 4.05 and 7.07 kg cm^(-2) in HD.Soil drying treatment did not significantly affect the grain yield of the main crop.Under mechanical harvesting of the main crop,HD increased the grain yield of the ratoon crop by 9.4% relative to LD.Consequently,Y_(Loss) was only 3.4% in HD,in contrast to 16.3% in LD.The differences in grain yield and Y_(Loos) between the two soil drying treatments were explained mainly by panicles m^(-2),which was increased significantly by HD in the track zone of the ratoon crop compared with LD.These results suggest that heavy soil drying practice during the mid-to-late grain filling stage of the main crop is effective for reducing Y_(Loss) of the ratoon crop in a mechanized rice ratooning system.