A certain weighted Herz-type Hardy space is introduced and its atom-decomposition theory is established. As applications of this theory, a boundedness theorem of sublinear operators and an interpolation theorem of lin...A certain weighted Herz-type Hardy space is introduced and its atom-decomposition theory is established. As applications of this theory, a boundedness theorem of sublinear operators and an interpolation theorem of linear operators on these spaces are given.展开更多
The decompositional characterizations of the weighted Herz spaces on Rn are established. Using this decomposition, the boundedness on the weighted Herz spaces for a large class of sublinear operators is studied.
In this paper,it was proved that the commutator H_(β,b)generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from L^(p1)(R^n)to L^(p2)(R^n)if and only if b is a CMO(R^...In this paper,it was proved that the commutator H_(β,b)generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from L^(p1)(R^n)to L^(p2)(R^n)if and only if b is a CMO(R^n)function,where 1/p1-1/p2=β/n,1<p1<∞,0≤β<n.Furthermore, the characterization of H_(β,b)on the homogenous Herz space K_q^(α,p)(R^n)was obtained.展开更多
Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the ato...Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the atomic Hardy space Hp,q,γ atb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ∈(μ)via the discrete coefficient K(ρ),p B,S,and prove that the Calder′on-Zygmund operator is bounded from Hp,q,γ,δmb,ρ(μ)(or Hp,q,γatb,ρ(μ))into Lp(μ),and from Hp,q,γ+1atb,ρ(ρ+1)(μ)into H p,q,γ,12(δ-νp+ν)mb,ρ(μ).The boundedness of the generalized fractional integral Tβ(β∈(0,1))from Hp1,q,γ,θmb,ρ(μ)(or Hp1,q,γatb,ρ(μ))into Lp2(μ)with 1/p2=1/p1-β is also established.The authors also introduce theρ-weakly doubling condition,withρ∈(1,∞),of the measure and construct a non-doubling measure satisfying this condition.If isρ-weakly doubling,the authors further introduce the Campanato space Eα,qρ,η,γ(μ)and show that Eα,qρ,η,γ(μ)is independent of the choices ofρ,η,γand q;the authors then introduce the atomic Hardy space Hp,q,γatb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ(μ),which coincide with each other;the authors finally prove that Hp,q,γatb,ρ(μ)is the predual of E1/p-1,1ρ,ρ,1(μ).Moreover,if is doubling,the authors show that Eα,qρ,η,γ(μ)and the Lipschitz space Lipα,q(μ)(q∈[1,∞)),or Hp,q,γatb,ρ(μ)and the atomic Hardy space Hp,q at(μ)(q∈(1,∞])of Coifman and Weiss coincide.Finally,if(X,d,)is an RD-space(reverse doubling space)with(X)=∞,the authors prove that Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ)and Hp,q at(μ)coincide for any q∈(1,2].In particular,when(X,d,):=(RD,||,dx)with dx being the D-dimensional Lebesgue measure,the authors show that spaces Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ),Hp,q,γatb,ρ(μ)and Hp,q,γ,mb,ρ(μ)all coincide with Hp(RD)for any q∈(1,∞).展开更多
We introduce certain Calderón-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces,weighted weak Lebesgue spaces,weighted Hardy spaces and weighted weak Hardy spaces.The...We introduce certain Calderón-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces,weighted weak Lebesgue spaces,weighted Hardy spaces and weighted weak Hardy spaces.The sharpness of some results is also investigated.展开更多
Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiew...Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiewicz integral is equivalent to either of its boundedness from L1(μ)into L1,∞(μ)or from the atomic Hardy space H1(μ)into L1(μ).Moreover,we show that,if the Marcinkiewicz integral is bounded from H1(μ)into L1(μ),then it is also bounded from L∞(μ)into the space RBLO(μ)(the regularized BLO),which is a proper subset of RBMO(μ)(the regularized BMO)and,conversely,if the Marcinkiewicz integral is bounded from L∞b(μ)(the set of all L∞(μ)functions with bounded support)into the space RBMO(μ),then it is also bounded from the finite atomic Hardy space H1,∞fin(μ)into L1(μ).These results essentially improve the known results even for non-doubling measures.展开更多
The authors mainly study the Hausdorff operators on Euclidean space Rn. They establish boundedness of the Hausdorff operators in various function spaces, such as Lebesgue spaces, Hardy spaces, local Hardy spaces and H...The authors mainly study the Hausdorff operators on Euclidean space Rn. They establish boundedness of the Hausdorff operators in various function spaces, such as Lebesgue spaces, Hardy spaces, local Hardy spaces and Herz type spaces. The results reveal that the Hausdorff operators have better performance on the Herz type Hardy spaces HKP(Rn) than their performance on the Hardy spaces Hv(Rn) when 0 〈 p 〈 1. Also, the authors obtain some new results and reprove or generalize some known results for the high dimensional Hardy operator and adjoint Hardy operator.展开更多
In this paper.the authors study the continuity properties of higher order commutators generated by the homogeneous fractional integral and BMO functions on certain Hardy spaces,weak Hardy spaces and Herz-type Hardy sp...In this paper.the authors study the continuity properties of higher order commutators generated by the homogeneous fractional integral and BMO functions on certain Hardy spaces,weak Hardy spaces and Herz-type Hardy spaces.展开更多
In this paper,the sharp bound for the weak-type(1,1) inequality for the n-dimensional Hardy operator is obtained.Moreover,the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out...In this paper,the sharp bound for the weak-type(1,1) inequality for the n-dimensional Hardy operator is obtained.Moreover,the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out.As applications,the corresponding norms of the Riemann-Liouville integral operator and the n-dimensional Hardy operator are deduced.It is also proved that the n-dimensional Hardy operator maps from the Hardy space into the Lebesgue space.The endpoint estimate for the commutator generated by the Hardy operator and the(central) BMO function is also discussed.展开更多
Let [b,T] be the commutator of the functionb ∈ Lip β (? n ) (0 <β ? 1)and the Calderón-Zygmund singular integral operatorT. The authors study the boundedness properties of [b,T] on the classical Hardy space...Let [b,T] be the commutator of the functionb ∈ Lip β (? n ) (0 <β ? 1)and the Calderón-Zygmund singular integral operatorT. The authors study the boundedness properties of [b,T] on the classical Hardy spaces and the Herz-type Hardy spaces in non-extreme cases. For the boundedness of these commutators in extreme cases, some characterizations are also given. Moreover, the authors prove that these commutators are bounded from Hardy type spaces to the weak Lebesgue or Herz spaces in extreme cases展开更多
We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function ...We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.展开更多
The Herz-type Sobolev spaces are introduced and the Sobolev theorem is established. The Herz-type Bessel potential spaces and the relation between the Herz-type Sobolev spaces and Bessel potential spaces are discussed...The Herz-type Sobolev spaces are introduced and the Sobolev theorem is established. The Herz-type Bessel potential spaces and the relation between the Herz-type Sobolev spaces and Bessel potential spaces are discussed. As applications of these theories, some regularity results of nonlinear quantities appearing in the compensated compactness theory on Herz-type Hardy spaces are given.展开更多
Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2...Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2t/dt)^1/2,where(FΩ^b^→,t(f)(x)=1/t∫|x-y|≤t Ω(x-y)/|x-y|^n-1 Лj=1^m(bj(x)-bj(y))f(y)dy.)When(bj∈Aβj,1≤j≤m,0〈βj〈1∑j=1^mβj=β〈n)and Ω is homogeneous of degreezero and satisfies the cancelation condition, we prove that μΩ^b^→is bounded from L^p(R^n)to L^8(R^n),where1〈p〈βand 1/s=1/p-β/n,Moreover,if Ω also satisties some L^q -Dini condition,then μΩ^b^→ isbounded from L^p(R^n)to Fp^β,∞(R^n)and on certain Hardy spaces.The article extends some known results.展开更多
In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic deco...In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic decomposition theorems for martingales in weak martingale Hardy spaces are proved. With the help of the weak atomic decompositions of martingale, a sufficient condition for a sublinear operator defined on the weak martingale Hardy spaces to be bounded is given. Using the sufficient condition, we obtain a series of martingale inequalities with respect to the weak Lp-norm, the inequalities of weak (p ,p)-type and some continuous imbedding relationships between various weak martingale Hardy spaces. These inequalities are the weak versions of the basic inequalities in the classical martingale Hp-theory.展开更多
Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, ...Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, 1] associated with L in terms of square functions defined via {e-t2kL}t〉O and establish their molecular and generalized square function characterizations. Typical examples of such operators include the 2k-order divergence form homogeneous elliptic operator L1 with complex bounded measurable coefficients and the 2k-order Schr6dinger type operator L2 := (-△)k + Vk, where A is the Laplacian and 0≤V C Llkoc(Rn). Moreover, as an application, for i E {1, 2}, the authors prove that the associated Riesz transform Vk(Li-1/2) p n HP(Rn) for @ (n/(n + k), 1] and establish the Riesz transform characterizations is bounded from HLI(IR ) to p of HPL1(]Rn) for p C (rn/(n + kr), 1] if {e-tL1 }t〉o satisfies the Lr - L2 k-off-diagonal estimates with r C (1, 2]. These results when k := I and L := L1 are known.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘A certain weighted Herz-type Hardy space is introduced and its atom-decomposition theory is established. As applications of this theory, a boundedness theorem of sublinear operators and an interpolation theorem of linear operators on these spaces are given.
基金Project supported by the National Natural Science Foundation of China.
文摘The decompositional characterizations of the weighted Herz spaces on Rn are established. Using this decomposition, the boundedness on the weighted Herz spaces for a large class of sublinear operators is studied.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10571014,10371080)the Doctoral Programme Foundation of Institute of Higher Education of China(Grant No.20040027001)
文摘In this paper,it was proved that the commutator H_(β,b)generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from L^(p1)(R^n)to L^(p2)(R^n)if and only if b is a CMO(R^n)function,where 1/p1-1/p2=β/n,1<p1<∞,0≤β<n.Furthermore, the characterization of H_(β,b)on the homogenous Herz space K_q^(α,p)(R^n)was obtained.
基金supported by National Natural Science Foundation of China(Grant Nos.11301534,11171027,11361020 and 11101339)Da Bei Nong Education Fund(Grant No.1101-2413002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120003110003)the Fundamental Research Funds for Central Universities of China(Grant Nos.2012LYB26,2012CXQT09,2013YB60 and 2014KJJCA10)
文摘Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the atomic Hardy space Hp,q,γ atb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ∈(μ)via the discrete coefficient K(ρ),p B,S,and prove that the Calder′on-Zygmund operator is bounded from Hp,q,γ,δmb,ρ(μ)(or Hp,q,γatb,ρ(μ))into Lp(μ),and from Hp,q,γ+1atb,ρ(ρ+1)(μ)into H p,q,γ,12(δ-νp+ν)mb,ρ(μ).The boundedness of the generalized fractional integral Tβ(β∈(0,1))from Hp1,q,γ,θmb,ρ(μ)(or Hp1,q,γatb,ρ(μ))into Lp2(μ)with 1/p2=1/p1-β is also established.The authors also introduce theρ-weakly doubling condition,withρ∈(1,∞),of the measure and construct a non-doubling measure satisfying this condition.If isρ-weakly doubling,the authors further introduce the Campanato space Eα,qρ,η,γ(μ)and show that Eα,qρ,η,γ(μ)is independent of the choices ofρ,η,γand q;the authors then introduce the atomic Hardy space Hp,q,γatb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ(μ),which coincide with each other;the authors finally prove that Hp,q,γatb,ρ(μ)is the predual of E1/p-1,1ρ,ρ,1(μ).Moreover,if is doubling,the authors show that Eα,qρ,η,γ(μ)and the Lipschitz space Lipα,q(μ)(q∈[1,∞)),or Hp,q,γatb,ρ(μ)and the atomic Hardy space Hp,q at(μ)(q∈(1,∞])of Coifman and Weiss coincide.Finally,if(X,d,)is an RD-space(reverse doubling space)with(X)=∞,the authors prove that Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ)and Hp,q at(μ)coincide for any q∈(1,2].In particular,when(X,d,):=(RD,||,dx)with dx being the D-dimensional Lebesgue measure,the authors show that spaces Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ),Hp,q,γatb,ρ(μ)and Hp,q,γ,mb,ρ(μ)all coincide with Hp(RD)for any q∈(1,∞).
基金Dachun Yang was partially supported by the NNSF and the SEDF of China
文摘We introduce certain Calderón-Zygmund-type operators and discuss their boundedness on spaces such as weighted Lebesgue spaces,weighted weak Lebesgue spaces,weighted Hardy spaces and weighted weak Hardy spaces.The sharpness of some results is also investigated.
基金supported by the Mathematical Tianyuan Youth Fund of the National Natural Science Foundation of China (Grant No. 11026120)Chinese Universities Scientific Fund (Grant No. 2011JS043)+1 种基金National Natural Science Foundation of China (Grant Nos. 11171027 and 11361020)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120003110003)
文摘Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiewicz integral is equivalent to either of its boundedness from L1(μ)into L1,∞(μ)or from the atomic Hardy space H1(μ)into L1(μ).Moreover,we show that,if the Marcinkiewicz integral is bounded from H1(μ)into L1(μ),then it is also bounded from L∞(μ)into the space RBLO(μ)(the regularized BLO),which is a proper subset of RBMO(μ)(the regularized BMO)and,conversely,if the Marcinkiewicz integral is bounded from L∞b(μ)(the set of all L∞(μ)functions with bounded support)into the space RBMO(μ),then it is also bounded from the finite atomic Hardy space H1,∞fin(μ)into L1(μ).These results essentially improve the known results even for non-doubling measures.
基金supported by the National Natural Science Foundation of China (Nos. 10931001, 10871173)
文摘The authors mainly study the Hausdorff operators on Euclidean space Rn. They establish boundedness of the Hausdorff operators in various function spaces, such as Lebesgue spaces, Hardy spaces, local Hardy spaces and Herz type spaces. The results reveal that the Hausdorff operators have better performance on the Herz type Hardy spaces HKP(Rn) than their performance on the Hardy spaces Hv(Rn) when 0 〈 p 〈 1. Also, the authors obtain some new results and reprove or generalize some known results for the high dimensional Hardy operator and adjoint Hardy operator.
基金supported by NSF of China(Grant:19971010)DPFIHE of China(Grant:98002703)National 973 Project of China
文摘In this paper.the authors study the continuity properties of higher order commutators generated by the homogeneous fractional integral and BMO functions on certain Hardy spaces,weak Hardy spaces and Herz-type Hardy spaces.
基金supported by National Natural Science Foundation of China(Grant Nos. 10931001,10901076 and 11171345)Shanghai Leading Academic Discipline Project(Grant No.J50101)supported by the Key Laboratory of Mathematics and Complex System(Beijing Normal University),Ministry of Education,China
文摘In this paper,the sharp bound for the weak-type(1,1) inequality for the n-dimensional Hardy operator is obtained.Moreover,the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out.As applications,the corresponding norms of the Riemann-Liouville integral operator and the n-dimensional Hardy operator are deduced.It is also proved that the n-dimensional Hardy operator maps from the Hardy space into the Lebesgue space.The endpoint estimate for the commutator generated by the Hardy operator and the(central) BMO function is also discussed.
基金This work was supported by the National 973 Project of China (Grant No.G19990751) the National Natural Science Foundation of China (Grant No. 19131080) the State Education Department Foundation of China (Grant No. 20010027002).
文摘Let [b,T] be the commutator of the functionb ∈ Lip β (? n ) (0 <β ? 1)and the Calderón-Zygmund singular integral operatorT. The authors study the boundedness properties of [b,T] on the classical Hardy spaces and the Herz-type Hardy spaces in non-extreme cases. For the boundedness of these commutators in extreme cases, some characterizations are also given. Moreover, the authors prove that these commutators are bounded from Hardy type spaces to the weak Lebesgue or Herz spaces in extreme cases
基金Supported by the National Natural Science Foundation of China(10931001, 10871173 and 11026104)
文摘We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.
基金Project supported by the National Science Foundation of China.
文摘The Herz-type Sobolev spaces are introduced and the Sobolev theorem is established. The Herz-type Bessel potential spaces and the relation between the Herz-type Sobolev spaces and Bessel potential spaces are discussed. As applications of these theories, some regularity results of nonlinear quantities appearing in the compensated compactness theory on Herz-type Hardy spaces are given.
基金Supported by National 973 Project(G.19990751)the SEDF of China(20040027001)
文摘Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2t/dt)^1/2,where(FΩ^b^→,t(f)(x)=1/t∫|x-y|≤t Ω(x-y)/|x-y|^n-1 Лj=1^m(bj(x)-bj(y))f(y)dy.)When(bj∈Aβj,1≤j≤m,0〈βj〈1∑j=1^mβj=β〈n)and Ω is homogeneous of degreezero and satisfies the cancelation condition, we prove that μΩ^b^→is bounded from L^p(R^n)to L^8(R^n),where1〈p〈βand 1/s=1/p-β/n,Moreover,if Ω also satisties some L^q -Dini condition,then μΩ^b^→ isbounded from L^p(R^n)to Fp^β,∞(R^n)and on certain Hardy spaces.The article extends some known results.
基金This work was supported by National Natural Science Foundation of China (Grant No. 10371093).
文摘In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic decomposition theorems for martingales in weak martingale Hardy spaces are proved. With the help of the weak atomic decompositions of martingale, a sufficient condition for a sublinear operator defined on the weak martingale Hardy spaces to be bounded is given. Using the sufficient condition, we obtain a series of martingale inequalities with respect to the weak Lp-norm, the inequalities of weak (p ,p)-type and some continuous imbedding relationships between various weak martingale Hardy spaces. These inequalities are the weak versions of the basic inequalities in the classical martingale Hp-theory.
基金supported by National Natural Science Foundation of China (Grant No.11171027)Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, 1] associated with L in terms of square functions defined via {e-t2kL}t〉O and establish their molecular and generalized square function characterizations. Typical examples of such operators include the 2k-order divergence form homogeneous elliptic operator L1 with complex bounded measurable coefficients and the 2k-order Schr6dinger type operator L2 := (-△)k + Vk, where A is the Laplacian and 0≤V C Llkoc(Rn). Moreover, as an application, for i E {1, 2}, the authors prove that the associated Riesz transform Vk(Li-1/2) p n HP(Rn) for @ (n/(n + k), 1] and establish the Riesz transform characterizations is bounded from HLI(IR ) to p of HPL1(]Rn) for p C (rn/(n + kr), 1] if {e-tL1 }t〉o satisfies the Lr - L2 k-off-diagonal estimates with r C (1, 2]. These results when k := I and L := L1 are known.