期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
An Eight Component Integrable Hamiltonian Hierarchy from a Reduced Seventh-Order Matrix Spectral Problem
1
作者 Savitha Muthanna Wen-Xiu Ma 《Journal of Applied Mathematics and Physics》 2024年第6期2102-2111,共10页
We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the... We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed. 展开更多
关键词 Matrix Spectral Problem Zero Curvature Equation Lax Pair Integrable Hierarchy NLS equations mKdV equations hamiltonian Structure Lie Bracke
下载PDF
一些数学物理问题中的Hamilton方程 被引量:7
2
作者 陈勇 郑宇 张鸿庆 《应用数学和力学》 EI CSCD 北大核心 2003年第1期19-24,共6页
讨论了新的一系列在数学物理方程中微分方程的Hamilton正则表示 ,其中包括变系数 2阶对称方程的Hamilton系统 ,关于常系数的 4阶对称方程新的非齐次Hamilton表示 ,MKdV方程以及KP方程的正则表示·
关键词 数学物理问题 HAMILTON方程 无穷维HAMILTON系统 HAMILTON正则方程 HAMILTON算子 MKdV方程 KP方程
下载PDF
准坐标描述的拉格朗日方程及其在非线性动力学系统中的能量约束型数值积分方法
3
作者 段宇鹏 吴景铼 张云清 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第1期265-280,共16页
在动力学问题的数值仿真中,保持离散后的系统与原始系统相同的特性和结构是非常重要的.对于使用哈密顿方程建模并使用辛积分器求解的保守系统,其系统的能量可以在求解过程中守恒.然而,有许多系统是在跟随坐标系下建模的,且模型中包含非... 在动力学问题的数值仿真中,保持离散后的系统与原始系统相同的特性和结构是非常重要的.对于使用哈密顿方程建模并使用辛积分器求解的保守系统,其系统的能量可以在求解过程中守恒.然而,有许多系统是在跟随坐标系下建模的,且模型中包含非线性耗散项,除非将耗散造成的能量损失一并考虑在内,否则很难保持系统的能量守恒特性。因此,在数值模拟期间保持总能量守恒是至关重要的。为了解决这个问题,本研究使用准坐标描述的拉格朗日方程来描述建立在跟随坐标系下的动力学系统,并提出了一种新的能量约束型欧拉积分器来求解建立的系统.该积分器将能量守恒定律作为约束方程,并从最初的常微分方程中构建一个新的微分代数方程通过隐式地求解该微分代数方程,获得保持系统总能量守恒的数值结果.为了将所提出的方法与常用的辛积分器和普通数值积分器进行比较,分别将各个积分器用于求解线性和非线性系统的初值问题。常用的辛积分器由于准坐标描述的拉格朗日方程的非对称结构,无法保持此类模型的总能量守恒特性.与之相对的,本文提出的能量约束型欧拉积分器能较严格地保持系统的能量守恒属性,且对保守和非保守系统都有较好的效果. 展开更多
关键词 拉格朗日方程 微分代数方程 能量守恒定律 哈密顿方程 非保守系统 常微分方程 准坐标 动力学问题
原文传递
THE l^1-STABILITY OF A HAMILTONIAN-PRESERVING SCHEME FOR THE LIOUVILLE EQUATION WITH DISCONTINUOUS POTENTIALS 被引量:3
4
作者 Xin Wen Shi Jin 《Journal of Computational Mathematics》 SCIE CSCD 2009年第1期45-67,共23页
We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We p... We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We prove that, for suitable initial data, the scheme is stable in the l^1-norm under a hyperbolic CFL condition which is in consistent with the l^1-convergence results established in [Wen and Jin, SIAM J. Numer. Anal., 46 (2008), 2688-2714] for the same scheme. The stability constant is shown to be independent of the computational time. We also provide a counter example to show that for other initial data, in particular, the measure-valued initial data, the numerical solution may become l^1-unstable. 展开更多
关键词 Liouville equations hamiltonian preserving schemes Discontinuous potentials l^1-stability Semiclassical limit.
原文传递
分析力学方法在平衡态热力学中的应用:分析热力学 被引量:3
5
作者 沈惠川 《力学季刊》 CSCD 北大核心 2003年第4期462-472,共11页
分析热力学乃是用分析力学的方法来研究平衡态热力学。本文用较简单的方法证明了“熵最大”变分原理与“Gibbs自由能最小”变分原理或“Helmholtz自由能最小”变分原理是等价的;以这三个Gibbs变分原理为出发点,导出了平衡态热力学的正... 分析热力学乃是用分析力学的方法来研究平衡态热力学。本文用较简单的方法证明了“熵最大”变分原理与“Gibbs自由能最小”变分原理或“Helmholtz自由能最小”变分原理是等价的;以这三个Gibbs变分原理为出发点,导出了平衡态热力学的正则方程。由平衡态热力学中的正则方程,可以证明热力学基本Poisson括号成立。本文的另一主要任务是借助于Gibbs变分原理,讨论平衡态热力学中热力学量的正则变换。可以得到热力学正则变换的四种形式。在分析(平衡态)热力学中也可提出“化准Hamiltonian为压强或容积的正则变换技术”。作为应用正则变换的实例,讨论了理想气体并得到了简明的结果。 展开更多
关键词 分析热力学 hamiltonian形式 平衡态热力学 Gibbs变分原理 热力学正则方程 热力学正则变换
下载PDF
Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
6
作者 孔新雷 吴惠彬 梅凤翔 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期407-411,共5页
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertibl... In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoftian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. 展开更多
关键词 Birkhoffian equations hamiltonian equations symplectic algorithm
下载PDF
粘弹性悬臂梁弯曲变形的哈密顿体系方法 被引量:2
7
作者 张维祥 邵兴 +1 位作者 徐新生 原方 《兰州理工大学学报》 CAS 北大核心 2009年第3期127-130,共4页
利用对应原理和变分法,提出一种求解粘弹性悬臂梁问题的哈密顿体系方法,得到对偶方程的基本解向量,即零本征向量和非零本征向量.具体问题的解可表示为这些本征向量的线性组合,组合系数取决于边界条件.通过算例描述粘弹性悬臂梁弯曲变形... 利用对应原理和变分法,提出一种求解粘弹性悬臂梁问题的哈密顿体系方法,得到对偶方程的基本解向量,即零本征向量和非零本征向量.具体问题的解可表示为这些本征向量的线性组合,组合系数取决于边界条件.通过算例描述粘弹性悬臂梁弯曲变形的应力分布规律、由端部的位移约束带来的应力集中现象以及弯曲变形的蠕变特征,表明了这种方法的有效性. 展开更多
关键词 哈密顿体系 对偶方程 本征向量 应力集中 悬臂梁
下载PDF
格子Boltzmann模型的改进与流体力学方程 被引量:2
8
作者 冯士德 赵 颖 +1 位作者 季仲贞 郜宪林 《力学学报》 EI CSCD 北大核心 2002年第4期492-500,共9页
流体的流动可以看成是分子以上水平的粒子基本运动组合而成,任何一个粒子系统的Hamiltonian都是由动能和势能这两部分所组成.借助于Hamiltonian建立了微观粒子和宏观流体之间的能量守恒准则,发展了一个适合于热流场数值模拟的格子Boltzm... 流体的流动可以看成是分子以上水平的粒子基本运动组合而成,任何一个粒子系统的Hamiltonian都是由动能和势能这两部分所组成.借助于Hamiltonian建立了微观粒子和宏观流体之间的能量守恒准则,发展了一个适合于热流场数值模拟的格子Boltzmann模型.从该模型可以还原出宏观的流体力学方程,所得动量方程的黏性输运项除了具有Navier-Stokes黏性力的特征外还与非定常的、非线性的动量通量和非定常的内能相关.用该模型对Benard热对流进行了数值模拟,很好地再现了Benard cell,并且克服了热格子Boltzmann模型数值稳定性差的不足. 展开更多
关键词 格子BOLTZMANN模型 hamiltonian 分布函数 流体力学方程 Benard热对流 数值模拟
下载PDF
THE L1-ERROR ESTIMATES FOR A HAMILTONIAN-PRESERVING SCHEME FOR THE LIOUVILLE EQUATION WITH PIECEWISE CONSTANT POTENTIALS AND PERTURBED INITIAL DATA 被引量:1
9
作者 Xin Wen 《Journal of Computational Mathematics》 SCIE CSCD 2011年第1期26-48,共23页
We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation error... We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation errors. We extend the l1-stability analysis in [46] and apply the Ll-error estimates with exact initial data established in [45] for the same scheme. We prove that the scheme with the Dirichlet incoming boundary conditions and for a class of bounded initial data is Ll-convergent when the initial data is given with a wide class of perturbation errors, and derive the Ll-error bounds with explicit coefficients. The convergence rate of the scheme is shown to be less than the order of the initial perturbation error, matching with the fact that the perturbation solution can be l1-unstable. 展开更多
关键词 Liouville equations hamiltonian preserving schemes Piecewise constant po-tentials Error estimate Perturbed initial data Semiclassical limit.
原文传递
Nonconservative mechanical systems with nonholonomic constraints
10
作者 KRUPKOV Olga 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第8期1475-1484,共10页
A geometric setting for generally nonconservative mechanical systems on fibred manifolds is proposed. Emphasis is put on an explicit formulation of nonholonomic mechanics when an unconstrained Lagrangian system moves ... A geometric setting for generally nonconservative mechanical systems on fibred manifolds is proposed. Emphasis is put on an explicit formulation of nonholonomic mechanics when an unconstrained Lagrangian system moves in a generally non-potential force field depending on time, positions and velocities, and the constraints are nonholonomic, not necessarily linear in velocities. Equations of motion, and the corresponding Harniltonian equations in intrinsic form are given. Regularity conditions are found and a nonholonomic Legendre transformation is proposed, leading to a canonical form of the nonholonomic Hamiltonian equations for nonconservative systems. 展开更多
关键词 nonconservative mechanical systems equations of motion hamiltonian equations nonholonomic constraints Chetaevequations hamiltonian equations for nonconservative nonholonomic systems
原文传递
关于混合状态Hamilton元半解析法及收敛估计
11
作者 郑宇 张鸿庆 唐立民 《大连理工大学学报》 CAS CSCD 北大核心 1995年第4期437-441,共5页
针对平面弹性混合状态问题,首先给出其Hamilton系统形式。然后在位移边界条件下给出其半解析有限元算法的误差估计,从而根据离散后的Hamilton方程辛算法的计算,可得到原问题的较精确数值解。
关键词 哈密尔顿方程 偏微分方程组 弹性力学 有限无法
下载PDF
The Hamiltonian Structures and Algebro-geometric Solution of the Generalized Kaup-Newell Soliton Equations
12
作者 WEI Han-yu PI Guo-mei 《Chinese Quarterly Journal of Mathematics》 2019年第2期209-220,共12页
Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-New... Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-Newell soliton equations are decomposed into two systems of ordinary differential equations.The Abel-Jacobi coordinates are introduced to straighten the flows,from which the algebro-geometric solutions of the generalized KaupNewell soliton equations are obtained in terms of the Riemann theta functions. 展开更多
关键词 SOLITON equations hamiltonian structures Algebro-geometric solutions RIEMANN THETA functions
下载PDF
双曲函数法的改进
13
作者 刘建国 《江西科技学院学报》 2008年第S1期20-22,共3页
通过对双曲函数法的改进,并用改进后的双曲函数法得到了Hamiltonian方程和coupled非线性发展方程的更多丰富的孤子解。
关键词 双曲函数法 hamiltonian方程 孤子解 coupled非线性发展方程
下载PDF
e1-ERROR ESTIMATES ON THE HAMILTONIAN-PRESERVING SCHEME FOR THE LIOUVILLE EQUATION WITH PIECEWISE CONSTANT POTENTIALS: A SIMPLE PROOF
14
作者 Xinchun Li 《Journal of Computational Mathematics》 SCIE CSCD 2017年第6期814-827,共14页
This work is concerned with e1-error estimates on a Hamiltonian-preserving scheme for the Liouville equation with pieeewise constant potentials in one space dimension. We provide an analysis much simpler than these in... This work is concerned with e1-error estimates on a Hamiltonian-preserving scheme for the Liouville equation with pieeewise constant potentials in one space dimension. We provide an analysis much simpler than these in literature and obtain the same half-order convergence rate. We formulate the Liouville equation with discretized velocities into a series of linear convection equations with piecewise constant coefficients, and rewrite the numerical scheme into some immersed interface upwind schemes. The e1-error estimates are then evaluated by comparing the derived equations and schemes. 展开更多
关键词 Liouville equations hamiltonian-preserving schemes Piecewise constant po-tentials e1-error estimate Half-order error bound Semiclassical limit.
原文传递
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS IN VARIANT BOUSSINESQ EQUATIONS
15
作者 袁玉波 溥冬梅 李庶民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第6期811-822,共12页
The bifurcations of solitary waves and kink waves for variant Boussinesq equations are studied by using the bifurcation theory of planar dynamical systems. The bifurcation sets and the numbers of solitary waves and ki... The bifurcations of solitary waves and kink waves for variant Boussinesq equations are studied by using the bifurcation theory of planar dynamical systems. The bifurcation sets and the numbers of solitary waves and kink waves for the variant Boussinesq equations are presented. Several types explicit formulas of solitary waves solutions and kink waves solutions are obtained. In the end, several formulas of periodic wave solutions are presented. 展开更多
关键词 hamiltonian system Boussinesq equations BIFURCATION solitary waves solutions kink waves solutions
下载PDF
Equivalent Hamiltonian Equations Modelling and Energy Function Construction for MMC-HVDC in Hybrid AC/DC Power Systems 被引量:1
16
作者 Yang Liu Zehui Lin +2 位作者 Kaishun Xiahou Yuqing Lin Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第4期821-831,共11页
This paper proposes an equivalent Hamiltonian equations model for the modular multilevel converter-based high-voltage direct-current(MMC-HVDC)transmission system,and constructs an energy function for multi-machine pow... This paper proposes an equivalent Hamiltonian equations model for the modular multilevel converter-based high-voltage direct-current(MMC-HVDC)transmission system,and constructs an energy function for multi-machine power systems with MMC-HVDC transmission lines.The equivalent Hamiltonian equations model is verified to be able to track the power output dynamics of the full model of an MMC-HVDC transmission system.Both theoretical and numerical studies have been undertaken to validate that the energy function proposed for hybrid AC/DC systems satisfies the conditions of an energy function.The work of this paper bridges the gap between the well-developed direct methods of transient stability analysis and power systems with MMC-HVDC transmission lines. 展开更多
关键词 Energy function equivalent hamiltonian equations model hybrid AC/DC power system MMC-HVDC transient stability
原文传递
托卡马克装置中高能离子的直接损失 被引量:1
17
作者 牟茂淋 刘宇 +2 位作者 王中天 陈少永 唐昌建 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第16期276-282,共7页
通过严格求解导心坐标系下的哈密顿方程,提出了托卡马克装置中离子的真实轨道理论,并利用此理论对国际热核聚变实验堆(ITER)中α离子的真实轨道进行了数值模拟研究,获得了驻点轨道和近期理论预言的半俘获轨道.根据此真实轨道理论计算了I... 通过严格求解导心坐标系下的哈密顿方程,提出了托卡马克装置中离子的真实轨道理论,并利用此理论对国际热核聚变实验堆(ITER)中α离子的真实轨道进行了数值模拟研究,获得了驻点轨道和近期理论预言的半俘获轨道.根据此真实轨道理论计算了ITER中α离子的直接损失率.结果发现,与所提出的真实轨道理论相比,以前的回旋平均理论大幅度低估了α离子的直接损失率,两种理论的损失率差值可达14%,对此差异进行了详细的分析并给出了物理上的解释. 展开更多
关键词 哈密顿方程 高能离子 真实轨道 直接损失
原文传递
四阶杆振动方程的sinh(x)蛙跳辛格式 被引量:1
18
作者 黄浪扬 《华侨大学学报(自然科学版)》 CAS 2003年第2期125-130,共6页
利用 Hyperbolic函数 sinh(x) ,构造四阶杆振动方程的任意阶精度的辛格式 。
关键词 四阶杆振动方程的 sinh(x)蛙跳辛格式 Hyperbo1ic函数 稳定性 HAMILTON系统 辛几何
下载PDF
Accuracy Enhancement Using Spectral Postprocessing for Differential Equations and Integral Equations 被引量:1
19
作者 Tao Tang Xiang Xu 《Communications in Computational Physics》 SCIE 2009年第2期779-792,共14页
It is demonstrated that spectral methods can be used to improve the accuracy of numerical solutions obtained by some lower order methods.More precisely,we can use spectral methods to postprocess numerical solutions of... It is demonstrated that spectral methods can be used to improve the accuracy of numerical solutions obtained by some lower order methods.More precisely,we can use spectral methods to postprocess numerical solutions of initial value differential equations.After a few number of iterations(say 3 to 4),the errors can decrease to a few orders of magnitude less.The iteration uses the Gauss-Seidel type strategy,which gives an explicit way of postprocessing.Numerical examples for ODEs,Hamiltonian system and integral equations are provided.They all indicate that the spectral processing technique can be a very useful way in improving the accuracy of the numerical solutions.In particular,for a Hamiltonian system accuracy is only one of the issues;some other conservative properties are even more important for large time simulations.The spectral postprocessing with the coarse-mesh symplectic initial guess can not only produce high accurate approximations but can also save a significant amount of computational time over the standard symplectic schemes. 展开更多
关键词 POSTPROCESSING spectral methods rate of convergence hamiltonian system integral equations
原文传递
KAM Theory for Partial Differential Equations 被引量:1
20
作者 Massimiliano Berti 《Analysis in Theory and Applications》 CSCD 2019年第3期235-267,共33页
In the last years much progress has been achieved in KAM theory concerning bifurcation of quasi-periodic solutions of Hamiltonian or reversible partial differential equations.We provide an overview of the state of the... In the last years much progress has been achieved in KAM theory concerning bifurcation of quasi-periodic solutions of Hamiltonian or reversible partial differential equations.We provide an overview of the state of the art in this field. 展开更多
关键词 KAM for PDEs quasi-periodic solutions small divisors infinite dimensional hamiltonian and reversible systems water waves nonlinear wave and Schr?dinger equations KDV
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部