对--800-kV直流输电线路区内及区外故障分量附加网络的理论分析表明,当直流输电线路发生区内故障时,于故障启动元件响应之后的短数据窗内,线路两侧电压电流故障分量均满足平波电感元件性能方程(voltage current relation,VCR);当发生区...对--800-kV直流输电线路区内及区外故障分量附加网络的理论分析表明,当直流输电线路发生区内故障时,于故障启动元件响应之后的短数据窗内,线路两侧电压电流故障分量均满足平波电感元件性能方程(voltage current relation,VCR);当发生区外故障时,故障侧的电压电流故障分量则不满足平波电感元件的VCR。为此,提出了基于实测电压与计算电压相关性的区内外故障判断方法:直流线路发生区内故障时,运用线路两侧实测电流由平波电感元件VCR分别计算两侧的电压,计算所得的电压波形与实测电压波形正相关,且数值很大;发生区外故障时,则故障侧计算所得的电压波形与实测电压波形负相关。据此,利用线路两侧计算的电压波形与实测电压波形的相关系数构造区内外故障识别判据。仿真结果表明,该识别算法可灵敏区识别内故障并可靠识别区外故障,可用于加速直流输电线路的后备保护动作。展开更多
安装屏蔽线是限制特高压直流线路地面电场与离子流的一种有效措施。由于空间电荷的存在,屏蔽线的表面电场强度会被明显增强,因此需要通过合成电场而非标称电场判断屏蔽线的电晕情况。采用区域分解法对屏蔽线的屏蔽效果进行定量分析,在...安装屏蔽线是限制特高压直流线路地面电场与离子流的一种有效措施。由于空间电荷的存在,屏蔽线的表面电场强度会被明显增强,因此需要通过合成电场而非标称电场判断屏蔽线的电晕情况。采用区域分解法对屏蔽线的屏蔽效果进行定量分析,在计算迭代过程中判断屏蔽线电晕的变化情况,考虑了屏蔽线电晕对于离子流场的影响。分别采用通量线法、不考虑电晕的有限元法和文中方法对地面电场与离子流进行预测,与实验缩尺模型测量结果进行对比,并对不同方法的计算差异进行比较分析。结果表明,屏蔽线电晕产生的异极性电荷会与极导线产生的离子流发生复合,且产生的地面场强方向与原电场方向相反,从而增强其对地面电场的屏蔽效果,计算方法中应当考虑屏蔽线的电晕效应。之后,针对一条典型的?800 k V特高压直流线路,分析了屏蔽线的布置方式对屏蔽效果的影响。展开更多
文摘对--800-kV直流输电线路区内及区外故障分量附加网络的理论分析表明,当直流输电线路发生区内故障时,于故障启动元件响应之后的短数据窗内,线路两侧电压电流故障分量均满足平波电感元件性能方程(voltage current relation,VCR);当发生区外故障时,故障侧的电压电流故障分量则不满足平波电感元件的VCR。为此,提出了基于实测电压与计算电压相关性的区内外故障判断方法:直流线路发生区内故障时,运用线路两侧实测电流由平波电感元件VCR分别计算两侧的电压,计算所得的电压波形与实测电压波形正相关,且数值很大;发生区外故障时,则故障侧计算所得的电压波形与实测电压波形负相关。据此,利用线路两侧计算的电压波形与实测电压波形的相关系数构造区内外故障识别判据。仿真结果表明,该识别算法可灵敏区识别内故障并可靠识别区外故障,可用于加速直流输电线路的后备保护动作。
文摘安装屏蔽线是限制特高压直流线路地面电场与离子流的一种有效措施。由于空间电荷的存在,屏蔽线的表面电场强度会被明显增强,因此需要通过合成电场而非标称电场判断屏蔽线的电晕情况。采用区域分解法对屏蔽线的屏蔽效果进行定量分析,在计算迭代过程中判断屏蔽线电晕的变化情况,考虑了屏蔽线电晕对于离子流场的影响。分别采用通量线法、不考虑电晕的有限元法和文中方法对地面电场与离子流进行预测,与实验缩尺模型测量结果进行对比,并对不同方法的计算差异进行比较分析。结果表明,屏蔽线电晕产生的异极性电荷会与极导线产生的离子流发生复合,且产生的地面场强方向与原电场方向相反,从而增强其对地面电场的屏蔽效果,计算方法中应当考虑屏蔽线的电晕效应。之后,针对一条典型的?800 k V特高压直流线路,分析了屏蔽线的布置方式对屏蔽效果的影响。