As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out...As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out a deep technical research and engineering application in this area,and at present,it has been stepped into a fast growing period.This paper gives a general review over China’s VSC based HVDC in terms of engineering technology,application and future development.It comprehensively analyzes the technical difficulties and future development orientation on the aspects of the main configurations of VSC based HVDC system,topological structures of converters,control and protection technologies,flexible DC cables,converter valve tests,etc.It introduces the applicable fields and current status of China’s VSC based HVDC projects,and analyzes the application trends of VSC based HVDC projects both in China and all over the world according to the development characteristics and demands of future power grids.展开更多
交直流电网混联,大规模电力跨区输送成为我国电力系统的主要特点。电网换相换流器型直流输电(line commutated converter high voltage direct current,LCC-HVDC)是我国交直流混联电网的主要组成部分,为实现交直流混联电网快速、准确仿...交直流电网混联,大规模电力跨区输送成为我国电力系统的主要特点。电网换相换流器型直流输电(line commutated converter high voltage direct current,LCC-HVDC)是我国交直流混联电网的主要组成部分,为实现交直流混联电网快速、准确仿真,该文对现有的LCC-HVDC换流器建模方法进行了分析与总结,对其优缺点进行评述,并根据作者观点,提出可进一步研究的内容:在仿真规模较大的交直流混联电网时,可用开关函数对LCC-HVDC进行建模,但模型准确度需要提升;多条LCC-HVDC输电线路的仿真可使用换流器级别模型与换流阀级别模型进行组合仿真;不同精细程度模型之间的数据接口要进行优化设计。展开更多
This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)g...This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).展开更多
This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore win...This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.展开更多
Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular mul...Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.展开更多
基金This work was supported by National Natural Science Foundation of China(No.51261130471).
文摘As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out a deep technical research and engineering application in this area,and at present,it has been stepped into a fast growing period.This paper gives a general review over China’s VSC based HVDC in terms of engineering technology,application and future development.It comprehensively analyzes the technical difficulties and future development orientation on the aspects of the main configurations of VSC based HVDC system,topological structures of converters,control and protection technologies,flexible DC cables,converter valve tests,etc.It introduces the applicable fields and current status of China’s VSC based HVDC projects,and analyzes the application trends of VSC based HVDC projects both in China and all over the world according to the development characteristics and demands of future power grids.
文摘交直流电网混联,大规模电力跨区输送成为我国电力系统的主要特点。电网换相换流器型直流输电(line commutated converter high voltage direct current,LCC-HVDC)是我国交直流混联电网的主要组成部分,为实现交直流混联电网快速、准确仿真,该文对现有的LCC-HVDC换流器建模方法进行了分析与总结,对其优缺点进行评述,并根据作者观点,提出可进一步研究的内容:在仿真规模较大的交直流混联电网时,可用开关函数对LCC-HVDC进行建模,但模型准确度需要提升;多条LCC-HVDC输电线路的仿真可使用换流器级别模型与换流阀级别模型进行组合仿真;不同精细程度模型之间的数据接口要进行优化设计。
基金supported by UK-China Smart Grid Project ERIFT via UK EPSRC,University of Birmingham SiGuang Li Scholarship and China Scholarship Council。
文摘This paper proposes the design of a novel DC current flow controller(CFC)and evaluates the control performance of balancing and regulating the DC branch currents using the DC CFC in a meshed multi-terminal HVDC(MTDC)grid.The DC CFC consists of two identical full bridge DC-DC converters with the capacitors of the two converters being connected in parallel.The scalability of the DC CFC is easily achievable due to the identical bridge converter topology;the cost of this DC CFC is also relatively low due to its simple physical structure and low voltage ratings.The control performance of the DC CFC is tested on a meshed 3-terminal(3-T)HVDC grid,which is based on modular multilevel converters(MMC).The DC branch current control in the meshed MTDC grid is achieved using the proposed control strategy of the DC CFC,and is verified through case studies on the real-time digital simulator(RTDS).
文摘This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.
基金funded by SGCC Science and Technology Program under project Research on Electromagnetic Transient Simulation Technology for Large-scale MMC-HVDC Systems.
文摘Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.