The mechanical properties of heat affected zone (HAZ) of two commercial high-Nb X80 grade pipeline steels with different alloy elements were investigated using thermal simulation performed on a Gleeble-3500 thermal ...The mechanical properties of heat affected zone (HAZ) of two commercial high-Nb X80 grade pipeline steels with different alloy elements were investigated using thermal simulation performed on a Gleeble-3500 thermal simulator. The results showed that the high-Nb steels have excellent weldability. Ernbrittlement regions appear in coarse grain heat affected zone (CGHAZ) and intercritically heat affected zone (ICHAZ) ~ Softening region appears in fine-grain heat affected zone (FGHAZ), and the strength here was even lower than 555 MPa as required in the standard. Meanwhile, with the increase of heat input, the strength and the toughness of HAZ of steel with high Nb, C and lower alloy decrease notably. Therefore, take into account the welding procedure during manufacture of weld pipe, suitable amount of alloy elements, such as Cr, Ni, Cu, Mo and so on, is necessary for high Nb X80 heavy- thick steel plate.展开更多
The heat-affected zone(HAZ) of electron beam welded(EBW) joint normally undergoes a unique heat-treating process consisting of rapid temperature rising and dropping stages, resulting in temperature-gradient in HAZ as ...The heat-affected zone(HAZ) of electron beam welded(EBW) joint normally undergoes a unique heat-treating process consisting of rapid temperature rising and dropping stages, resulting in temperature-gradient in HAZ as a function of the distance to fusion zone(FZ). In the current work,microstructure, elements distribution and crystallographic orientation of three parts(near base material(BM) zone, mid-HAZ and near-FZ) in the HAZ of Ti-6Al-4V alloy were systematically investigated. The microstructure observation revealed that the microstructural variation from near-BM to near-FZ included the reduction of primary α(αp) grains, the increase of transformed β structure(βt) and the formation of various α structures. The rim-α, dendritic α and abnormal secondary α(αs) colonies formed in the mid-HAZ, while the "ghost" structures grew in the near-FZ respectively. The electron probe microanalyzer(EPMA) and electron back-scattered diffraction(EBSD) technologies were employed to evaluate the elements diffusion and texture evolution during the unique thermal process of welding. The formation of the various α structures in the HAZ were discussed based on the EPMA and EBSD results. Finally, the nanoindentation hardness of "ghost" structures was presented and compared with nearby βt regions.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51171162)Natural Science Foundation of Hebei Province of China(E2011203169)The R&D Project of CITIC-CBMM(2011-D056-3)
文摘The mechanical properties of heat affected zone (HAZ) of two commercial high-Nb X80 grade pipeline steels with different alloy elements were investigated using thermal simulation performed on a Gleeble-3500 thermal simulator. The results showed that the high-Nb steels have excellent weldability. Ernbrittlement regions appear in coarse grain heat affected zone (CGHAZ) and intercritically heat affected zone (ICHAZ) ~ Softening region appears in fine-grain heat affected zone (FGHAZ), and the strength here was even lower than 555 MPa as required in the standard. Meanwhile, with the increase of heat input, the strength and the toughness of HAZ of steel with high Nb, C and lower alloy decrease notably. Therefore, take into account the welding procedure during manufacture of weld pipe, suitable amount of alloy elements, such as Cr, Ni, Cu, Mo and so on, is necessary for high Nb X80 heavy- thick steel plate.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences (XDB06050100)Natural Key Research and Development Program of China (2016YFC0304201, 2016YFC0304206)Natural Science Foundation of China (No. 51871225)
文摘The heat-affected zone(HAZ) of electron beam welded(EBW) joint normally undergoes a unique heat-treating process consisting of rapid temperature rising and dropping stages, resulting in temperature-gradient in HAZ as a function of the distance to fusion zone(FZ). In the current work,microstructure, elements distribution and crystallographic orientation of three parts(near base material(BM) zone, mid-HAZ and near-FZ) in the HAZ of Ti-6Al-4V alloy were systematically investigated. The microstructure observation revealed that the microstructural variation from near-BM to near-FZ included the reduction of primary α(αp) grains, the increase of transformed β structure(βt) and the formation of various α structures. The rim-α, dendritic α and abnormal secondary α(αs) colonies formed in the mid-HAZ, while the "ghost" structures grew in the near-FZ respectively. The electron probe microanalyzer(EPMA) and electron back-scattered diffraction(EBSD) technologies were employed to evaluate the elements diffusion and texture evolution during the unique thermal process of welding. The formation of the various α structures in the HAZ were discussed based on the EPMA and EBSD results. Finally, the nanoindentation hardness of "ghost" structures was presented and compared with nearby βt regions.