This paper discusses robust control strategy for isopropyl benzene production process using the method of loop shaping H_(∞) technology.This cumene production process is a part of phenol plant in HOCL,Kochi.H_(∞) co...This paper discusses robust control strategy for isopropyl benzene production process using the method of loop shaping H_(∞) technology.This cumene production process is a part of phenol plant in HOCL,Kochi.H_(∞) control of the propylene concentration is done here.The H_(∞) controller is derived from the linearised model of the reactor.The optimal H_(∞) controller is obtained by simplifying two algebraic Riccati equations.The proposed PID-like H_(∞) controller provides a single tuning parameter which makes the controller design more accurate.The proposed controller has been compared with other robust controllers like H_(2) and LQR.The H_(∞) controller is found to be superior in a wide frequency range and has a feature of low distortion and good regulating performance.The reactor model has been developed in COMSOL Multiphysics with the parameters obtained from HOCL plant,Kochi.The model extracted is reduced using model order reduction for the controller design.展开更多
This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified frame...This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.展开更多
文摘This paper discusses robust control strategy for isopropyl benzene production process using the method of loop shaping H_(∞) technology.This cumene production process is a part of phenol plant in HOCL,Kochi.H_(∞) control of the propylene concentration is done here.The H_(∞) controller is derived from the linearised model of the reactor.The optimal H_(∞) controller is obtained by simplifying two algebraic Riccati equations.The proposed PID-like H_(∞) controller provides a single tuning parameter which makes the controller design more accurate.The proposed controller has been compared with other robust controllers like H_(2) and LQR.The H_(∞) controller is found to be superior in a wide frequency range and has a feature of low distortion and good regulating performance.The reactor model has been developed in COMSOL Multiphysics with the parameters obtained from HOCL plant,Kochi.The model extracted is reduced using model order reduction for the controller design.
基金a part of the project titled "Development of Key Marine Equipments for Enhancement of Ocean Industry-Development of Underwater Manipulator and Thrusting System Driven by Electric Motor" funded by the Ministry of Land, Transport and Maritime Affairs, Korea
文摘This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.