We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is ma...We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant.展开更多
We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with tem...We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density μ(ξ). We assume that ■ and ■ , where αi, i = 1, · · ·, d(or α) can take negative value.展开更多
In [1] we construct a unique bounded H■lder continuous viscosity solution for the nonlinear PDEs with the evolution p-Laplacian equation and its anisotropic version as typical examples. In this part, we investigate t...In [1] we construct a unique bounded H■lder continuous viscosity solution for the nonlinear PDEs with the evolution p-Laplacian equation and its anisotropic version as typical examples. In this part, we investigate the Lipschitz continuity of the free boundary of viscosity solution and its asymptotic spherical symmetricity, however,this result does not include the anisotropic case.展开更多
The Hǒlder continuity is proved for the gradient of the solution Jo the one-sided obstacle problem of the following variational inequality in the case 1<p<2
基金supported by the National Natural Science Foundation of China(Grant Nos.11901429 and 12071021).
文摘We prove a global estimate in the Sobolev spaces with variable exponents to the solution of a class of higher-order divergence parabolic equations with measurable coefficients over the non-smooth domains.Here,it is mainly assumed that the coefficients are allowed to be merely measurable in one of the spatial variables and have a small BMO quasi-norm in the other variables at a sufficiently small scale,while the boundary of the underlying domain belongs to the so-called Reifenberg flatness.This is a natural outgrowth of Dong-Kim-Zhang’s papers[1,2]from the W^(m,p)-regularity to the W^(m,p(t,x))-regularity for such higher-order parabolic equations with merely measurable coefficients with Reifenberg flat domain which is beyond the Lipschitz domain with small Lipschitz constant.
基金supported by an NSERC granta startup fund of University of Albertasupported by Martin Hairer’s Leverhulme Trust leadership award
文摘We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density μ(ξ). We assume that ■ and ■ , where αi, i = 1, · · ·, d(or α) can take negative value.
文摘In [1] we construct a unique bounded H■lder continuous viscosity solution for the nonlinear PDEs with the evolution p-Laplacian equation and its anisotropic version as typical examples. In this part, we investigate the Lipschitz continuity of the free boundary of viscosity solution and its asymptotic spherical symmetricity, however,this result does not include the anisotropic case.
基金in part by Zhongshan University Science Research Fund
文摘The Hǒlder continuity is proved for the gradient of the solution Jo the one-sided obstacle problem of the following variational inequality in the case 1<p<2