Eolian loess is widely distributed on the various geomorphic surfaces between 700-2400 m a.s.l. on the northern slope of the Tian Shan. It is formed in a synchronous manner with dust transported from the Gurbantunggut...Eolian loess is widely distributed on the various geomorphic surfaces between 700-2400 m a.s.l. on the northern slope of the Tian Shan. It is formed in a synchronous manner with dust transported from the Gurbantunggut Desert in the Junggar Basin. The thickest section of loess was found in the Shawan and Shihezi regions. Paleomagnetic and climatic proxy analyses of over 71 m of a loess-paleosol sequence on the highest terrace of the Qingshui He (River) in the Shawan show that the paleomagnetic Bruhues/Matuy-ama (B/M) boundary lies at the bottom of paleosol S8, at a depth of 69.5 m, and the bottom of the sequence was estimated to be -0.8 Ma. This implies that the extremely dry climatic conditions in the Junggar Basin and the initial Gurbantunggut Desert were present at least by 0.8 Ma. High-resolution grain size series demonstrate that this area and desert expansion experienced two dramatic periods of desert expansions that occurred at -0.65 Ma and 0.5 Ma, respectively; and the subsequent continuous展开更多
基金This work was co-supported by China's 'Excellent Researchers Fund' of the National Natural Science Foundation of China (Grant No. 49928J01)'Hundred Talents Project' of the Chinese Academy of Sciences (Renjiaozi[2000]005)the National Tibetan Project (
文摘Eolian loess is widely distributed on the various geomorphic surfaces between 700-2400 m a.s.l. on the northern slope of the Tian Shan. It is formed in a synchronous manner with dust transported from the Gurbantunggut Desert in the Junggar Basin. The thickest section of loess was found in the Shawan and Shihezi regions. Paleomagnetic and climatic proxy analyses of over 71 m of a loess-paleosol sequence on the highest terrace of the Qingshui He (River) in the Shawan show that the paleomagnetic Bruhues/Matuy-ama (B/M) boundary lies at the bottom of paleosol S8, at a depth of 69.5 m, and the bottom of the sequence was estimated to be -0.8 Ma. This implies that the extremely dry climatic conditions in the Junggar Basin and the initial Gurbantunggut Desert were present at least by 0.8 Ma. High-resolution grain size series demonstrate that this area and desert expansion experienced two dramatic periods of desert expansions that occurred at -0.65 Ma and 0.5 Ma, respectively; and the subsequent continuous