Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central n...Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the iniured central nervous system.展开更多
It is well established that guidance of axons during neuronal development is regulated by a variety of extracellular signals,governing cytoskeletal dynamics in growth cones.The actin and microtubule(MT)cytoskeleton ...It is well established that guidance of axons during neuronal development is regulated by a variety of extracellular signals,governing cytoskeletal dynamics in growth cones.The actin and microtubule(MT)cytoskeleton have both been shown to play important roles.However,a growing body of work suggests that a critical issue is the proper coordination of changes within these two major cytoskeletal systems(reviewed in Cammara-ta et al., 2016).展开更多
Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not onl...Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-313, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.展开更多
Chromophore-assisted laser inactivation(CALI) is a technique that uses photochemically-generated reactive oxygen species to acutely inactivate target proteins in living cells.Neural development includes highly dynam...Chromophore-assisted laser inactivation(CALI) is a technique that uses photochemically-generated reactive oxygen species to acutely inactivate target proteins in living cells.Neural development includes highly dynamic cellular processes such as asymmetric cell division,migration,axon and dendrite outgrowth and synaptogenesis.Although many key molecules of neural development have been identified since the past decades,their spatiotemporal contributions to these cellular events are not well understood.CALI provides an appealing tool for elucidating the precise functions of these molecules during neural development.In this review,we summarize the principles of CALI,a recent microscopic setup to perform CALI experiments,and the application of CALI to the study of growth-cone motility and neuroblast asymmetric division.展开更多
Cannabis has a detrimental impact on the developing nervous system. Therefore, regular consumption of cannabis by pregnant and lactating woman poses a potential risk to neuronal growth in fetuses and infants. Indeed, ...Cannabis has a detrimental impact on the developing nervous system. Therefore, regular consumption of cannabis by pregnant and lactating woman poses a potential risk to neuronal growth in fetuses and infants. Indeed, endogenous cannabis-like molecules called endocannabinoids regulate many physiological processes, including neurogenesis, axon guidance, and synaptic plasticity through CB1 receptors. To investigate the physiological role of CB1 receptors on peripheral sensory nerve growth, the endocannabinoid 2-arachidonoyl glycerol was added to cultured chick dorsal root ganglion neurons. This compound inhibited neurite elongation and induced growth cone collapse in a dose- and time-dependent manner. These data suggest that caution should be exercised regarding maternal cannabis use during pregnancy. Because ectopic sprouting and abnormal neuronal network connections are considered to be a cause of neuropathic pain, our current data imply an additional role of endocannabinoids as inhibitors of the formation of pain-maintenance networks.展开更多
基金supported by the NIH(NS53470)the Kentucky Spinal Cord and Head Injury Research Trust(#10-11A)the Department of Defense,CDMRP(SC090248/W81XWH-10-1-0778)
文摘Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the iniured central nervous system.
基金supported by the Hungarian Science Foundation(OTKA)(K109330 to JM)the Hungarian Brain Research Program(KTIA_NAP_13-2-2014-0007 to JM)+1 种基金the National Research,Development and Innovation Office(GINOP-2.3.2-15-2016-00001 and GINOP-2.3.2-15-2016-00032 to JM)by an MTA Postdoctoral Fellowship(to IF)
文摘It is well established that guidance of axons during neuronal development is regulated by a variety of extracellular signals,governing cytoskeletal dynamics in growth cones.The actin and microtubule(MT)cytoskeleton have both been shown to play important roles.However,a growing body of work suggests that a critical issue is the proper coordination of changes within these two major cytoskeletal systems(reviewed in Cammara-ta et al., 2016).
基金supported by the National Institutes of Health and Whitehall Foundation
文摘Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-313, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.
基金supported by grants from the National Basic Research Program of China (973 Program) to W.L.and G.O.(2012CB966800 and 2012CB945002)the National Natural Science Foundation of China to W.L.and G.O.(31101002,31171295 and 31190063)the Junior Thousand Talents Program of China to G.O
文摘Chromophore-assisted laser inactivation(CALI) is a technique that uses photochemically-generated reactive oxygen species to acutely inactivate target proteins in living cells.Neural development includes highly dynamic cellular processes such as asymmetric cell division,migration,axon and dendrite outgrowth and synaptogenesis.Although many key molecules of neural development have been identified since the past decades,their spatiotemporal contributions to these cellular events are not well understood.CALI provides an appealing tool for elucidating the precise functions of these molecules during neural development.In this review,we summarize the principles of CALI,a recent microscopic setup to perform CALI experiments,and the application of CALI to the study of growth-cone motility and neuroblast asymmetric division.
文摘Cannabis has a detrimental impact on the developing nervous system. Therefore, regular consumption of cannabis by pregnant and lactating woman poses a potential risk to neuronal growth in fetuses and infants. Indeed, endogenous cannabis-like molecules called endocannabinoids regulate many physiological processes, including neurogenesis, axon guidance, and synaptic plasticity through CB1 receptors. To investigate the physiological role of CB1 receptors on peripheral sensory nerve growth, the endocannabinoid 2-arachidonoyl glycerol was added to cultured chick dorsal root ganglion neurons. This compound inhibited neurite elongation and induced growth cone collapse in a dose- and time-dependent manner. These data suggest that caution should be exercised regarding maternal cannabis use during pregnancy. Because ectopic sprouting and abnormal neuronal network connections are considered to be a cause of neuropathic pain, our current data imply an additional role of endocannabinoids as inhibitors of the formation of pain-maintenance networks.