When the power grid suffers from grid faults that cause phase disturbances,the grid-connected converter becomes destabilized by the interaction between the phase-locked loop(PLL)and the control loop.In this paper,the ...When the power grid suffers from grid faults that cause phase disturbances,the grid-connected converter becomes destabilized by the interaction between the phase-locked loop(PLL)and the control loop.In this paper,the stability of the PLL affected by the control loop under transient grid faults is studied.First,the equivalent model of the PLL under the influence of the control loop is established.Then,different response processes of PLLs under the ground fault with various control parameters are qualitatively analyzed.Furthermore,a small-signal model is proposed to assess the stability of the PLL under different control loop parameters.The system poles can be calculated to show the physical origin of the instability.Finally,simulations of a three-phase 21-level modular multilevel converter(MMC)built in PSCAD and a down-scale experiment is performed to verify the parameter influence of the control loop on the PLL.展开更多
A virtual loop model was built by the transmission analysis with virtual ground method to assist the negative-resistance oscillator design, providing more perspectives on output power and phase-noise optimization. In ...A virtual loop model was built by the transmission analysis with virtual ground method to assist the negative-resistance oscillator design, providing more perspectives on output power and phase-noise optimization. In this work, the virtual loop described the original circuit successfully and the optimizations were effective. A 10 GHz high-efficiency low phase-noise oscillator utilizing an InGaP/GaAs HBT was achieved. The 10.028 GHz oscillator delivered an output power of over 15 dBm with a phase-noise of lower than -107 dBc/Hz at 100 kHz offset. The efficiency of DC to RF transformation was 35 %. The results led to a good oscillator figure of merit of-188 dBc/Hz. The measurement results agreed well with those of the simulations.展开更多
基金This work was supported by the National Natural Science Foundation of China(51877159,51637007,U1866601).
文摘When the power grid suffers from grid faults that cause phase disturbances,the grid-connected converter becomes destabilized by the interaction between the phase-locked loop(PLL)and the control loop.In this paper,the stability of the PLL affected by the control loop under transient grid faults is studied.First,the equivalent model of the PLL under the influence of the control loop is established.Then,different response processes of PLLs under the ground fault with various control parameters are qualitatively analyzed.Furthermore,a small-signal model is proposed to assess the stability of the PLL under different control loop parameters.The system poles can be calculated to show the physical origin of the instability.Finally,simulations of a three-phase 21-level modular multilevel converter(MMC)built in PSCAD and a down-scale experiment is performed to verify the parameter influence of the control loop on the PLL.
文摘A virtual loop model was built by the transmission analysis with virtual ground method to assist the negative-resistance oscillator design, providing more perspectives on output power and phase-noise optimization. In this work, the virtual loop described the original circuit successfully and the optimizations were effective. A 10 GHz high-efficiency low phase-noise oscillator utilizing an InGaP/GaAs HBT was achieved. The 10.028 GHz oscillator delivered an output power of over 15 dBm with a phase-noise of lower than -107 dBc/Hz at 100 kHz offset. The efficiency of DC to RF transformation was 35 %. The results led to a good oscillator figure of merit of-188 dBc/Hz. The measurement results agreed well with those of the simulations.