Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Us...Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Using piecewise polynomial interpolation thought,this model can dynamically predict the general trend of time series data.Combined with low-order polynomial,the cubic spline interpolation has smaller error,avoids the Runge phenomenon of high-order polynomial,and has better approximation effect.Meanwhile,prediction is implemented with the newest information according to the rolling and feedback mechanism and fluctuating error is controlled well to improve prediction accuracy in time-varying environment.Case study using the living electricity consumption data of Jiangsu province in 2008 is presented to demonstrate the effectiveness of the proposed model.展开更多
基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及...基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及滑动训练、最优融合等技术对模式误差序列进行时频处理,实现了对模式系统误差和局地误差的订正,发展了西北区智能网格气温客观预报方法(northwest intelligent grid temperature objective prediction method,NWTM)。以2017年3月—2018年2月数据作为训练样本,对2018年3月—2019年1月西北区239个国家基本站进行检验。结果表明:1)NWTM对CMA和ECMWF两种模式产品的气温预报能力有显著的提升;随着预报时效增长,两种模式订正产品的误差增大。2)NWTM对ECMWF西北区最高气温的订正效果要明显优于CMA,但就最低气温而言,NWTM对CMA的订正效果更为显著。其中,就24 h最高气温而言,ECMWF在宁夏的订正效果最好,CMA在青海的订正效果最好;而对于24 h最低气温的预报,CMA在西北4省的订正效果相差不大,ECMWF在陕西的订正效果最好。3)空间误差检验表明:针对最高气温的预报,ECMWF订正产品的订正能力明显优于CMA,特别是在甘肃河西走廊和中东部、陕西北部和南部、宁夏中南部及青海大部。就最低气温的预报而言,ECMWF和CMA对甘肃河东和陕西南部的订正能力较好;ECMWF订正产品在宁夏中南部及青海南部的订正能力高于CMA,而CMA订正产品在陕西中部的订正能力更优。展开更多
基金This work has been supported by the National 863 Key Project Grant No. 2008AA042901, National Natural Science Foundation of China Grant No.70631003 and No.90718037, Foundation of Hefei University of Technology Grant No. 2010HGXJ0083.
文摘Electricity demand forecasting plays an important role in smart grid expansion planning.In this paper,we present a dynamic GM(1,1) model based on grey system theory and cubic spline function interpolation principle.Using piecewise polynomial interpolation thought,this model can dynamically predict the general trend of time series data.Combined with low-order polynomial,the cubic spline interpolation has smaller error,avoids the Runge phenomenon of high-order polynomial,and has better approximation effect.Meanwhile,prediction is implemented with the newest information according to the rolling and feedback mechanism and fluctuating error is controlled well to improve prediction accuracy in time-varying environment.Case study using the living electricity consumption data of Jiangsu province in 2008 is presented to demonstrate the effectiveness of the proposed model.
文摘基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及滑动训练、最优融合等技术对模式误差序列进行时频处理,实现了对模式系统误差和局地误差的订正,发展了西北区智能网格气温客观预报方法(northwest intelligent grid temperature objective prediction method,NWTM)。以2017年3月—2018年2月数据作为训练样本,对2018年3月—2019年1月西北区239个国家基本站进行检验。结果表明:1)NWTM对CMA和ECMWF两种模式产品的气温预报能力有显著的提升;随着预报时效增长,两种模式订正产品的误差增大。2)NWTM对ECMWF西北区最高气温的订正效果要明显优于CMA,但就最低气温而言,NWTM对CMA的订正效果更为显著。其中,就24 h最高气温而言,ECMWF在宁夏的订正效果最好,CMA在青海的订正效果最好;而对于24 h最低气温的预报,CMA在西北4省的订正效果相差不大,ECMWF在陕西的订正效果最好。3)空间误差检验表明:针对最高气温的预报,ECMWF订正产品的订正能力明显优于CMA,特别是在甘肃河西走廊和中东部、陕西北部和南部、宁夏中南部及青海大部。就最低气温的预报而言,ECMWF和CMA对甘肃河东和陕西南部的订正能力较好;ECMWF订正产品在宁夏中南部及青海南部的订正能力高于CMA,而CMA订正产品在陕西中部的订正能力更优。