随着物联网技术的飞速发展,射频识别(Radio Frequency Identification,RFID)系统因具有非接触、快速识别等优点而成为了解决物联网问题的首选方案。RFID网络规划问题要考虑多个目标,被证明是多目标优化的问题。群体智能(Swarm Intellige...随着物联网技术的飞速发展,射频识别(Radio Frequency Identification,RFID)系统因具有非接触、快速识别等优点而成为了解决物联网问题的首选方案。RFID网络规划问题要考虑多个目标,被证明是多目标优化的问题。群体智能(Swarm Intelligence,SI)算法在解决多目标优化问题方面得到了广泛的关注。文中提出了一种改进型灰狼算法(Improved Grey Wolf Optimizer,IGWO),利用高斯变异算子和惯性常量策略来实现RFID网络规划。通过建立优化模型,在满足标签100%覆盖率、部署更少的阅读器、避免信号干扰、消耗更少的功率4个目标的基础上,将所提算法与粒子群算法(Particle Swarm Optimization,PSO)、遗传算法(Genetic Algorithm,GA)、帝王蝶算法(Monarch Butterfly Algorithm,MMBO)进行了对比分析。实验结果表明,灰狼算法在RFID网络规划时表现更优异,在相同的实验环境下,相较于其他算法,IGWO的适应度值比GA提高了20.2%,比PSO提高了13.5%,比MMBO提高了9.66%;并且覆盖的标签数更多,可以更有效地求出最优化方案。展开更多