The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,par...The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.展开更多
The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite da...The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.展开更多
The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regio...The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regions and periods vary,and the reasons for this variability are yet to be explained.Thus,in this study,we proposed a new remote sensing ecological vulnerability index by considering moisture,heat,greenness,dryness,land degradation,and social economy indicators and then analyzed and disclosed the spatial and temporal change patterns of ecological vulnerability of the Yellow River Basin,China from 2000 to 2022 and its driving mechanisms.The results showed that the newly proposed remote sensing ecological vulnerability index had a high accuracy,at 86.36%,which indicated a higher applicability in the Yellow River Basin.From 2000 to 2022,the average remote sensing ecological vulnerability index of the Yellow River Basin was 1.03,denoting moderate vulnerability level.The intensive vulnerability area was the most widely distributed,which was mostly located in the northern part of Shaanxi Province and the eastern part of Shanxi Province.From 2000 to 2022,the ecological vulnerability in the Yellow showed an overall stable trend,while that of the central and eastern regions showed an obvious trend of improvement.The gravity center of ecological vulnerability migrated southwest,indicating that the aggravation of ecological vulnerability in the southwestern regions was more severe than in the northeastern regions of the basin.The dominant single factor of changes in ecological vulnerability shifted from normalized difference vegetation index(NDVI)to temperature from 2000 to 2022,and the interaction factors shifted from temperature∩NDVI to temperature∩precipitation,which indicated that the global climate change exerted a more significant impact on regional ecosystems.The above results could provide decision support for the ecological protection and restoration of the Yellow River Basin.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFC0407104)the National Natural Science Foundation of China(Grants No.52079049 and 51739003)+1 种基金the Central University Basic Research Project(Grant No.B200202160)the Water Science Project of Xinjiang(Grant No.YF 2020-05).
文摘The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509202)the National Natural Science Foundation of China(Grant Nos.41772350,61371189,and 41701513).
文摘The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.
基金funded by the National Natural Science Foundation of China(42471329,42101306,42301102)the Natural Science Foundation of Shandong Province(ZR2021MD047)+1 种基金the Scientific Innovation Project for Young Scientists in Shandong Provincial Universities(2022KJ224)the Gansu Youth Science and Technology Fund Program(24JRRA100).
文摘The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regions and periods vary,and the reasons for this variability are yet to be explained.Thus,in this study,we proposed a new remote sensing ecological vulnerability index by considering moisture,heat,greenness,dryness,land degradation,and social economy indicators and then analyzed and disclosed the spatial and temporal change patterns of ecological vulnerability of the Yellow River Basin,China from 2000 to 2022 and its driving mechanisms.The results showed that the newly proposed remote sensing ecological vulnerability index had a high accuracy,at 86.36%,which indicated a higher applicability in the Yellow River Basin.From 2000 to 2022,the average remote sensing ecological vulnerability index of the Yellow River Basin was 1.03,denoting moderate vulnerability level.The intensive vulnerability area was the most widely distributed,which was mostly located in the northern part of Shaanxi Province and the eastern part of Shanxi Province.From 2000 to 2022,the ecological vulnerability in the Yellow showed an overall stable trend,while that of the central and eastern regions showed an obvious trend of improvement.The gravity center of ecological vulnerability migrated southwest,indicating that the aggravation of ecological vulnerability in the southwestern regions was more severe than in the northeastern regions of the basin.The dominant single factor of changes in ecological vulnerability shifted from normalized difference vegetation index(NDVI)to temperature from 2000 to 2022,and the interaction factors shifted from temperature∩NDVI to temperature∩precipitation,which indicated that the global climate change exerted a more significant impact on regional ecosystems.The above results could provide decision support for the ecological protection and restoration of the Yellow River Basin.