The possible variation of the electromagnetic fine structure constant, αe, at cosmological scales has aroused great interest in recent years. Strongly lensed gravitational waves(GWs) and their electromagnetic count...The possible variation of the electromagnetic fine structure constant, αe, at cosmological scales has aroused great interest in recent years. Strongly lensed gravitational waves(GWs) and their electromagnetic counterparts could be used to test this variation. Under the assumption that the speed of a photon can be modified,whereas the speed of a GW is the same as predicted by general relativity, and they both propagate in a flat FriedmanRobertson-Walker universe, we investigated the difference in time delays of the images and derived the upper bound of the variation of αe. For a typical lensing system in the standard cosmological models, we obtained B cosθ 1.85×10^(-5),where B is the dipolar amplitude and θ is the angle between observation and the preferred direction. Our result is consistent with the most up-to-date observations on αe. In addition, the observations of strongly lensed GWs and their electromagnetic counterparts could be used to test which types of alternative theories of gravity can account for the variation of α_e.展开更多
The gravitized vacuum is operationally defined as the vacuum of space sufficiently close to any gravitating massive body, or collection of bodies, such that its gravitational energy field strength and density are obse...The gravitized vacuum is operationally defined as the vacuum of space sufficiently close to any gravitating massive body, or collection of bodies, such that its gravitational energy field strength and density are observed, or expected, to be greater than that of deep intergalactic space. It is hypothesized that the contributions to gravitational lensing and excess galactic/peri-galactic rotational inertia currently attributed to dark matter could be predictable effects of increased energy density, with corresponding mass effects, of a gravitized vacuum acting in the manner of a near-absolute zero superfluid. This hypothesis should be testable by an earth-based laboratory with the apparatus and procedure described herein.展开更多
Even though dark matter and dark energy have long been accepted as being of fundamental importance in cosmology, in this paper, we will present arguments to show that neither is necessary. Instead, the phenomena they ...Even though dark matter and dark energy have long been accepted as being of fundamental importance in cosmology, in this paper, we will present arguments to show that neither is necessary. Instead, the phenomena they are thought to be responsible for are consequences of a vacuum whose curvature varies with time. We will focus on three phenomena that are thought to require the existence of dark energy and dark matter. The first is the idea that dark energy is responsible for the observed accelerating expansion of the universe. We will show instead that with time-varying curvature, Einstein’s equations demand such an acceleration without reference to dark or any other form of energy. Turning to dark matter, it is supposedly required to explain the observed constant velocity profile of the stars making up the disks of spiral galaxies and to explain the strong gravitational lensing observed in galaxy clusters. We will show, however, that both phenomena can again be understood in terms of the vacuum and its curvature. In the former case, we will show that galaxies exist within a rotating volume of the vacuum and that this leads directly to the observed constant velocity profiles. In the latter case, gradients of the vacuum curvature serving as a varying index of refraction are responsible. Using numerical results from our new model of nucleosynthesis, we estimate the degree of bending to expect and find that the results are in accord with observation. Our new model very naturally explains the phenomena attributed to dark matter and dark energy and since neither has been observed after several decades of looking, Occam’s razor tells us that neither exists.展开更多
A new model of the modified Newtonian gravity called Compacted & Collapsing Gravity (CCG) is proposed. Similar to the Milgrom’s MOND, it allows explaining the flattening of rotation curve in spiral galaxies, thus...A new model of the modified Newtonian gravity called Compacted & Collapsing Gravity (CCG) is proposed. Similar to the Milgrom’s MOND, it allows explaining the flattening of rotation curve in spiral galaxies, thus eliminates the need for dark matter at this level. However, in contrast to MOND, it puts a distinct limit on effective gravity;thereby constraints the sizes of single galaxies in connection to their masses, which complies with observations. In the bigger than single galaxies structures such as galaxy clusters, CCG rather complements than replaces interpretations of the observational data based on dark matter. Besides, the new model provides a plausible explanation to the hierarchical structure of the universe.展开更多
Gravitational lensing has become a powerful research tool for exploring the distribution of matter and energy in the universe nowadays, as glare phenomena around the Sun and massive galaxies are indeed observed on the...Gravitational lensing has become a powerful research tool for exploring the distribution of matter and energy in the universe nowadays, as glare phenomena around the Sun and massive galaxies are indeed observed on the Earth. What is the physical nature of gravitational lensing effect? Both Newton’s law of gravitation and Einstein’s theory of relativity are difficult to physically explain these glare phenomena. This study points out that the observed glare around the Sun and large galaxies is a result or product of the orthogonal interaction of high-energy particles emitted from different star light sources. It shows a new physical state associated with abnormal high mass-energy density.展开更多
In the present paper, gravitational lensing is described as the electromagnetic influence from gravity waves on light waves. Previous reports have described the dynamic electromagnetic processes of the atom, the photo...In the present paper, gravitational lensing is described as the electromagnetic influence from gravity waves on light waves. Previous reports have described the dynamic electromagnetic processes of the atom, the photon and gravity. Results from these reports have been compiled into a theoretical model. The theoretical model describes the mechanism which results in gravitational lensing. The study also displays how the electromagnetic characteristics of gravity waves and light waves and the mechanism creating gravitational lensing are measured.展开更多
The aim of the paper is to study weak gravitational lensing of quantum (perturbed) and classical lukewarm black holes (QLBHs and CLBHs respectively) in the presence of cosmological parameter A. We apply a numerica...The aim of the paper is to study weak gravitational lensing of quantum (perturbed) and classical lukewarm black holes (QLBHs and CLBHs respectively) in the presence of cosmological parameter A. We apply a numerical method to evaluate the deflection angle of bending light rays, image locations θ of sample sourceβ = π- 4, and corresponding magnifications μ. There are no obtained real values for Einstein ring locations θE(β = 0) for CLBHs but we calculate them for QLBHs. As an experimental test of our calculations, we choose mass M of 60 types of the most massive observed galactic black holes acting as a gravitational lens and study quantum matter field effects on the angle of bending light rays in the presence of cosmological constant effects. We calculate locations of non-relativistic images and corresponding magnifications. Numerical diagrams show that the quantum matter effects cause absolute values of the quantum deflection angle to be reduced with respect to the classical ones. The sign of the quantum deflection angle is changed with respect to the classical values in the presence of the cosmological constant. This means dominance of the anti-gravity counterpart of the cosmological horizon on the angle of bending light rays with respect to absorbing effects of 60 local types of the most massive observed black holes. Variations of the image positions and magnifications are negligible when increasing dimensionless cosmological constant ∈ = 16AM2 /2The deflection angle takes positive (negative) values for CLBHs (QLBHs) and they decrease very fast (slowly) by increasing the closest distance x0 of bending light ray and/or dimensionless cosmological parameter for sample giant black holes with 0.001 〈 ∈ 〈 0.01.展开更多
A formula to investigate the wave effect in a multi-lens system is presented on the basis of a path integral formalism by generalizing the work by Nakamura and Deguchi (1999). The wave effect of a system with two lens...A formula to investigate the wave effect in a multi-lens system is presented on the basis of a path integral formalism by generalizing the work by Nakamura and Deguchi (1999). The wave effect of a system with two lenses is investigated in an analytic way as a simple application to demonstrate usefulness of the formula and variety of wave effect in multi-lens system.展开更多
The lensing effect of a cosmic string is studied, and some new methods are proposed to detect the cosmic string. The technique for using jets as extended gravitational lensing probes was first explored by Kronberg. We...The lensing effect of a cosmic string is studied, and some new methods are proposed to detect the cosmic string. The technique for using jets as extended gravitational lensing probes was first explored by Kronberg. We use the "alignment-breaking parameter" nc as a sensitive indicator of gravitational distortion by a wiggly cosmic string. Then, we applied the non-constant deflection angle to jets, and na of a specific jet is just related to the projected slope of the jet. At least three jets in the sample of Square Kilometer Array (SKA) would have significant signals (na 〉 10°) if the wiggly infinite cosmic string existed. The distortion of elliptical object is also studied and used to do a statistical research on the directions of axes and ellipticities of galaxies. In the direction of the string, we find that galaxies appear to be more elliptical for an observer and the distribution of apparent ellipticity changes correspondingly. The ellipticity distribution of current SDSS spiral sample has the signal- to-noise ratio up to 8.48 which is large enough for astronomical observations. The future survey, such as Large Synoptic Survey Telescope (LSST) and Dark Energy Survey (DES) would weaken the requirement of special geometry in the data processing. As a result, all kinds of distributions, including ellipticity axis distribution, would serve as probes to detect wiggly strings in the near future. In brief, if a wiggly cosmic string existed, these signals would be convenient to be observed with the future weak lensing survey or other surveys in the deep space. If there was no lensing signal in these distributions, it would give the upper limit of the abundance of infinite strings.展开更多
The principal testing ground for general relativity is the observable Universe. Gravitational lensing is the leading observational technique that gives insight into the distribution of baryonic matter in the stellar, ...The principal testing ground for general relativity is the observable Universe. Gravitational lensing is the leading observational technique that gives insight into the distribution of baryonic matter in the stellar, galactic and cosmological scale, as well as the distribution of dark matter and dark energy, due to their gravitational interaction. Interpretation of ever more precise observational data requires increasingly subtle analytical techniques. In this paper, I discuss a formalism that can handle a nonlinear superposition of gravitational and refractive lensing by a grouping of baryonic matter, dark matter and dark energy for a given distribution of those entities (i.e. for a given spacetime metric) and their refractive properties. The role of refraction in gravitational lensing is exemplified in the case of a microlensing event and a signature of such an effect is discussed.展开更多
We present an estimate of the strong lensing probability by dark ha-los, withemphasis on the role of the baryonic matter arising purely from radiative cooling. We treat thecontribution of the cooled baryons optimistic...We present an estimate of the strong lensing probability by dark ha-los, withemphasis on the role of the baryonic matter arising purely from radiative cooling. We treat thecontribution of the cooled baryons optimistically with all the cooled baryons confined within acentral core, and including no feedback process from stellar evolution. Our two-component modelprovides a strong lensing probability that is in good agreement with the observed distribution ofmultiple images of quasars, provided that the cooled baryons are deposited within a spherical regionof radius of 0.1 times the virial radius and follow an isothermal profile. It is pointed out thatstrong lensing may be used as an additional probe of baryon physics in dark halos though this maymeanwhile complicate the test of the inner density profiles of dark matter in halos using theobserved strong lensing probability.展开更多
In the context of strong gravitational lensing, the magnification of an image is crucially important for constraining various lens models. For several commonly used quadruple lens models, the magnification invariants,...In the context of strong gravitational lensing, the magnification of an image is crucially important for constraining various lens models. For several commonly used quadruple lens models, the magnification invariants, defined as the sum of the signed magnifications of images, have been analytically derived when the image multiplicity is a maximum. In this paper, we further study the magnification of several disk lens models, including (a) exponential disk lens, (b) Gaussian disk lens, (c) modified Hubble profile lens, and another two of the popular three-dimensional symmetrical lens models, (d) NFW lens and (e) Einasto lens. We find that magnification invariant exists for each lens model. Moreover, our results show that magnification invariants can be significantly changed by the characteristic surface mass density kc.展开更多
Neutrinos produced from γ-ray bursts (GRBs) carry significant physical information. The electron density in the GRBs outflow is very large. In this study, we calculate the matter effect on neutrinos when they propaga...Neutrinos produced from γ-ray bursts (GRBs) carry significant physical information. The electron density in the GRBs outflow is very large. In this study, we calculate the matter effect on neutrinos when they propagate through such a dense region. The average survival probability and the flavor ratio of neutrinos are determined. The ratio of resonant neutrino energy from different spherical shells provides the information of power index N for the power-law distribution of electrons in the hot fireball model. Electron density in the magnetic jet model is sufficiently lower than in the hot fireball model. The matter effect on neutrinos can be used to distinguish these two models. The coherent effect of strongly lensed PeV neutrinos is also discussed. The average survival probability of strongly-lensed electron neutrinos in the normal and inverted hierarchical cases are presented. The results show that this coherent effect can be used to determine the hierarchical mass of neutrinos.展开更多
We show that the number of different gravitational effects is significantly greater than previously thought. First of all, it turned out that the observed constancy of the speed of light relative to the surrounding ma...We show that the number of different gravitational effects is significantly greater than previously thought. First of all, it turned out that the observed constancy of the speed of light relative to the surrounding masses is a special case of a previously unknown fundamental gravitational effect related to the action of gravitation on the speed of light. In other words, the constancy of the speed of light becomes an integral part of gravitation. Moreover, it turned out that the increase in inertial mass and the dilation of the proper time of particles that were accelerated relative to the surrounding masses are also consequences of this fundamental gravitational effect. All of these secondary effects are in the same row with such well-known effects as gravitational refraction and gravitational lensing, which are also a consequence of the action of gravitation on the speed of light. Their belonging to gravitation causes a number of unique features, for example, asymmetry in time dilation and anisotropy of the speed of light, which have been successfully confirmed experimentally. The research is based on a detailed analysis of a large set of experimental data using the classical axiomatic approach.展开更多
基金Supported by the National Natural Science Fund of China(11775038,11603005,11647307)
文摘The possible variation of the electromagnetic fine structure constant, αe, at cosmological scales has aroused great interest in recent years. Strongly lensed gravitational waves(GWs) and their electromagnetic counterparts could be used to test this variation. Under the assumption that the speed of a photon can be modified,whereas the speed of a GW is the same as predicted by general relativity, and they both propagate in a flat FriedmanRobertson-Walker universe, we investigated the difference in time delays of the images and derived the upper bound of the variation of αe. For a typical lensing system in the standard cosmological models, we obtained B cosθ 1.85×10^(-5),where B is the dipolar amplitude and θ is the angle between observation and the preferred direction. Our result is consistent with the most up-to-date observations on αe. In addition, the observations of strongly lensed GWs and their electromagnetic counterparts could be used to test which types of alternative theories of gravity can account for the variation of α_e.
文摘The gravitized vacuum is operationally defined as the vacuum of space sufficiently close to any gravitating massive body, or collection of bodies, such that its gravitational energy field strength and density are observed, or expected, to be greater than that of deep intergalactic space. It is hypothesized that the contributions to gravitational lensing and excess galactic/peri-galactic rotational inertia currently attributed to dark matter could be predictable effects of increased energy density, with corresponding mass effects, of a gravitized vacuum acting in the manner of a near-absolute zero superfluid. This hypothesis should be testable by an earth-based laboratory with the apparatus and procedure described herein.
文摘Even though dark matter and dark energy have long been accepted as being of fundamental importance in cosmology, in this paper, we will present arguments to show that neither is necessary. Instead, the phenomena they are thought to be responsible for are consequences of a vacuum whose curvature varies with time. We will focus on three phenomena that are thought to require the existence of dark energy and dark matter. The first is the idea that dark energy is responsible for the observed accelerating expansion of the universe. We will show instead that with time-varying curvature, Einstein’s equations demand such an acceleration without reference to dark or any other form of energy. Turning to dark matter, it is supposedly required to explain the observed constant velocity profile of the stars making up the disks of spiral galaxies and to explain the strong gravitational lensing observed in galaxy clusters. We will show, however, that both phenomena can again be understood in terms of the vacuum and its curvature. In the former case, we will show that galaxies exist within a rotating volume of the vacuum and that this leads directly to the observed constant velocity profiles. In the latter case, gradients of the vacuum curvature serving as a varying index of refraction are responsible. Using numerical results from our new model of nucleosynthesis, we estimate the degree of bending to expect and find that the results are in accord with observation. Our new model very naturally explains the phenomena attributed to dark matter and dark energy and since neither has been observed after several decades of looking, Occam’s razor tells us that neither exists.
文摘A new model of the modified Newtonian gravity called Compacted & Collapsing Gravity (CCG) is proposed. Similar to the Milgrom’s MOND, it allows explaining the flattening of rotation curve in spiral galaxies, thus eliminates the need for dark matter at this level. However, in contrast to MOND, it puts a distinct limit on effective gravity;thereby constraints the sizes of single galaxies in connection to their masses, which complies with observations. In the bigger than single galaxies structures such as galaxy clusters, CCG rather complements than replaces interpretations of the observational data based on dark matter. Besides, the new model provides a plausible explanation to the hierarchical structure of the universe.
文摘Gravitational lensing has become a powerful research tool for exploring the distribution of matter and energy in the universe nowadays, as glare phenomena around the Sun and massive galaxies are indeed observed on the Earth. What is the physical nature of gravitational lensing effect? Both Newton’s law of gravitation and Einstein’s theory of relativity are difficult to physically explain these glare phenomena. This study points out that the observed glare around the Sun and large galaxies is a result or product of the orthogonal interaction of high-energy particles emitted from different star light sources. It shows a new physical state associated with abnormal high mass-energy density.
文摘In the present paper, gravitational lensing is described as the electromagnetic influence from gravity waves on light waves. Previous reports have described the dynamic electromagnetic processes of the atom, the photon and gravity. Results from these reports have been compiled into a theoretical model. The theoretical model describes the mechanism which results in gravitational lensing. The study also displays how the electromagnetic characteristics of gravity waves and light waves and the mechanism creating gravitational lensing are measured.
文摘The aim of the paper is to study weak gravitational lensing of quantum (perturbed) and classical lukewarm black holes (QLBHs and CLBHs respectively) in the presence of cosmological parameter A. We apply a numerical method to evaluate the deflection angle of bending light rays, image locations θ of sample sourceβ = π- 4, and corresponding magnifications μ. There are no obtained real values for Einstein ring locations θE(β = 0) for CLBHs but we calculate them for QLBHs. As an experimental test of our calculations, we choose mass M of 60 types of the most massive observed galactic black holes acting as a gravitational lens and study quantum matter field effects on the angle of bending light rays in the presence of cosmological constant effects. We calculate locations of non-relativistic images and corresponding magnifications. Numerical diagrams show that the quantum matter effects cause absolute values of the quantum deflection angle to be reduced with respect to the classical ones. The sign of the quantum deflection angle is changed with respect to the classical values in the presence of the cosmological constant. This means dominance of the anti-gravity counterpart of the cosmological horizon on the angle of bending light rays with respect to absorbing effects of 60 local types of the most massive observed black holes. Variations of the image positions and magnifications are negligible when increasing dimensionless cosmological constant ∈ = 16AM2 /2The deflection angle takes positive (negative) values for CLBHs (QLBHs) and they decrease very fast (slowly) by increasing the closest distance x0 of bending light ray and/or dimensionless cosmological parameter for sample giant black holes with 0.001 〈 ∈ 〈 0.01.
文摘A formula to investigate the wave effect in a multi-lens system is presented on the basis of a path integral formalism by generalizing the work by Nakamura and Deguchi (1999). The wave effect of a system with two lenses is investigated in an analytic way as a simple application to demonstrate usefulness of the formula and variety of wave effect in multi-lens system.
文摘The lensing effect of a cosmic string is studied, and some new methods are proposed to detect the cosmic string. The technique for using jets as extended gravitational lensing probes was first explored by Kronberg. We use the "alignment-breaking parameter" nc as a sensitive indicator of gravitational distortion by a wiggly cosmic string. Then, we applied the non-constant deflection angle to jets, and na of a specific jet is just related to the projected slope of the jet. At least three jets in the sample of Square Kilometer Array (SKA) would have significant signals (na 〉 10°) if the wiggly infinite cosmic string existed. The distortion of elliptical object is also studied and used to do a statistical research on the directions of axes and ellipticities of galaxies. In the direction of the string, we find that galaxies appear to be more elliptical for an observer and the distribution of apparent ellipticity changes correspondingly. The ellipticity distribution of current SDSS spiral sample has the signal- to-noise ratio up to 8.48 which is large enough for astronomical observations. The future survey, such as Large Synoptic Survey Telescope (LSST) and Dark Energy Survey (DES) would weaken the requirement of special geometry in the data processing. As a result, all kinds of distributions, including ellipticity axis distribution, would serve as probes to detect wiggly strings in the near future. In brief, if a wiggly cosmic string existed, these signals would be convenient to be observed with the future weak lensing survey or other surveys in the deep space. If there was no lensing signal in these distributions, it would give the upper limit of the abundance of infinite strings.
文摘The principal testing ground for general relativity is the observable Universe. Gravitational lensing is the leading observational technique that gives insight into the distribution of baryonic matter in the stellar, galactic and cosmological scale, as well as the distribution of dark matter and dark energy, due to their gravitational interaction. Interpretation of ever more precise observational data requires increasingly subtle analytical techniques. In this paper, I discuss a formalism that can handle a nonlinear superposition of gravitational and refractive lensing by a grouping of baryonic matter, dark matter and dark energy for a given distribution of those entities (i.e. for a given spacetime metric) and their refractive properties. The role of refraction in gravitational lensing is exemplified in the case of a microlensing event and a signature of such an effect is discussed.
基金Supported by the National Natural Science Foundation of China.
文摘We present an estimate of the strong lensing probability by dark ha-los, withemphasis on the role of the baryonic matter arising purely from radiative cooling. We treat thecontribution of the cooled baryons optimistically with all the cooled baryons confined within acentral core, and including no feedback process from stellar evolution. Our two-component modelprovides a strong lensing probability that is in good agreement with the observed distribution ofmultiple images of quasars, provided that the cooled baryons are deposited within a spherical regionof radius of 0.1 times the virial radius and follow an isothermal profile. It is pointed out thatstrong lensing may be used as an additional probe of baryon physics in dark halos though this maymeanwhile complicate the test of the inner density profiles of dark matter in halos using theobserved strong lensing probability.
基金supports of the National Natural Science Foundation of China(Nos.11403103,11603032,11333008 and 11273061)the 973 program(Nos.2015CB857003 and 2013CB834900)+1 种基金China Postdoctoral Science Foundation(2014M551681)the Natural Science Foundation of Jiangsu Province(No.BK20140050).
文摘In the context of strong gravitational lensing, the magnification of an image is crucially important for constraining various lens models. For several commonly used quadruple lens models, the magnification invariants, defined as the sum of the signed magnifications of images, have been analytically derived when the image multiplicity is a maximum. In this paper, we further study the magnification of several disk lens models, including (a) exponential disk lens, (b) Gaussian disk lens, (c) modified Hubble profile lens, and another two of the popular three-dimensional symmetrical lens models, (d) NFW lens and (e) Einasto lens. We find that magnification invariant exists for each lens model. Moreover, our results show that magnification invariants can be significantly changed by the characteristic surface mass density kc.
基金Supported in part by the Natural Science Foundation of China(11675131,11775038,11603005,11847301)the Fundamental Research Funds for the Central Universities(2019CDJDWL0005)
文摘Neutrinos produced from γ-ray bursts (GRBs) carry significant physical information. The electron density in the GRBs outflow is very large. In this study, we calculate the matter effect on neutrinos when they propagate through such a dense region. The average survival probability and the flavor ratio of neutrinos are determined. The ratio of resonant neutrino energy from different spherical shells provides the information of power index N for the power-law distribution of electrons in the hot fireball model. Electron density in the magnetic jet model is sufficiently lower than in the hot fireball model. The matter effect on neutrinos can be used to distinguish these two models. The coherent effect of strongly lensed PeV neutrinos is also discussed. The average survival probability of strongly-lensed electron neutrinos in the normal and inverted hierarchical cases are presented. The results show that this coherent effect can be used to determine the hierarchical mass of neutrinos.
文摘We show that the number of different gravitational effects is significantly greater than previously thought. First of all, it turned out that the observed constancy of the speed of light relative to the surrounding masses is a special case of a previously unknown fundamental gravitational effect related to the action of gravitation on the speed of light. In other words, the constancy of the speed of light becomes an integral part of gravitation. Moreover, it turned out that the increase in inertial mass and the dilation of the proper time of particles that were accelerated relative to the surrounding masses are also consequences of this fundamental gravitational effect. All of these secondary effects are in the same row with such well-known effects as gravitational refraction and gravitational lensing, which are also a consequence of the action of gravitation on the speed of light. Their belonging to gravitation causes a number of unique features, for example, asymmetry in time dilation and anisotropy of the speed of light, which have been successfully confirmed experimentally. The research is based on a detailed analysis of a large set of experimental data using the classical axiomatic approach.