A genetic linkage map with 89 SSR marker loci was constructed based on a maize (Zea mays L.) population consisting of 184 F-2 individuals from the cross, Huangzao 4 X Ye 107. The 184 F-3 families were evaluated in the...A genetic linkage map with 89 SSR marker loci was constructed based on a maize (Zea mays L.) population consisting of 184 F-2 individuals from the cross, Huangzao 4 X Ye 107. The 184 F-3 families were evaluated in the field under well-watered and drought-stressed regimes in Shanxi Province of China. The objectives of the study were to identify genetic segments responsible for the expression of anthesis-silking interval (ASI), ear setting and grain yield, and to examine if the quantitative trait loci (QTLs) for ASI or yield components can be used in marker-assisted selection (MAS) to improve grain yield under drought conditions. Results showed that under well-watered and drought-stressed regimes, three and two QTLs involved in the expression of ASI were detected on chromosomes 1, 2 and 3, and 2 and 5, respectively. Under well-watered regime, two QTLs for ear setting were detected on chromosomes 3 and 6, explaining about 19.9% of the phenotypic variance, and displayed additive and partial dominant effects, respectively. Under drought-stressed condition, four QTLs for ear setting were detected on chromosomes 3, 7 and 10, which were responsible for interpreting 60.4% of the phenotypic variance, and showed dominant or partial dominant effects. Under well-watered condition, four QTLs controlling grain yield were identified on chromosomes 3, 6 and 7, while five QTLs were identified under drought stress on chromosomes 1, 2, 4 and 8. The gene action was of additive or partial dominant effects, and each QTL could explain 7.3% to 22.0% of the phenotypic variance, respectively. Under drought conditions, ASI and ear setting percentage were highly correlated with grain yield, which can be used as secondary traits for grain yield selection. Based on linked markers detected and gene action analyzed, an MAS strategy for yield improvement under drought condition could be established, which consists of QTLs contributing to decreased ASI and to increased ear setting and grain yield, respectively.展开更多
Grain size traits, including grain length, grain width and grain thickness, are controlled by quantitative trait loci (QTLs). Many QTLs relating to rice grain size traits had been reported, but their control mechani...Grain size traits, including grain length, grain width and grain thickness, are controlled by quantitative trait loci (QTLs). Many QTLs relating to rice grain size traits had been reported, but their control mechanisms have not yet been elucidated. A recombinant inbred line (RIL) population of 240 lines, deriving from a cross between TD70, an extra-large grain size japonica line with 80 g of 1000-grain weight, and Kasalath, a small grain size indica variety, were constructed and used to map grain size QTLs to a linkage map by using 141 SSR markers in 2010 and 2011. Five QTLs for grain length, six for grain width and seven for grain thickness were detected distributing over chromosomes 2, 3, 5, 7, 9 and 12. Seven QTLs, namely qGL3.1, qGW2, qGW2.2, qGW5.1, qGW5.2, qGT2.3 and qGT3.1, were detected in either of the two years and explained for 56.19%, 4.42%, 29.41%, 10.37%, 7.61%, 21.19% and 17.06% of the observed phenotypic variances on average, respectively. The marker interval RM1347-RM5699 on chromosome 2 was found common for grain length, grain width and grain thickness; qGL3.1 and qGT3.1 were mapped to the same interval RM6080-RM6832 on chromosome 3. All 18 QTL alleles were derived from the large grain parent TD70. Most of the QTLs mapped in the present study were found the same as the genes previously cloned (GW2, GS3 or qGL3, GW5 and GS5), and several were the same as the QTLs (GS7 and qGL-7) previously mapped. Three QTLs, qGL2.2 on chromosome 2, qGW9 and qGT9 on chromosome 9, were first detected. These results laid a foundation for further fine mapping or cloning of these QTLs.展开更多
为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分...为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分析,并基于DH群体的55K芯片数据进行籽粒相关性状QTL检测。结果表明,多元回归分析中,粒宽对千粒质量的贡献最大。通过完备区间作图对籽粒性状进行QTL定位,除6D和7B染色体外,其他19条染色体上共检测到69个有关籽粒性状的QTL,包括24个千粒质量QTL、28个粒长QTL、17个粒宽QTL,单个QTL的表型解释率为6.87%~27.74%。其中,7A染色体上粒长相关的Qgl.ahau-7A.1在7个环境及BLUP下均被检测到,表型解释率为9.48%~22.26%,加性效应为0.11~0.21 mm,物理区间4.91 Mb(AX-110430243~AX-110442528),可能为新的主效QTL。因此,Qgl.ahau-7A.1位点可作为后续精细定位和分子标记辅助育种重点关注的区域。展开更多
文摘A genetic linkage map with 89 SSR marker loci was constructed based on a maize (Zea mays L.) population consisting of 184 F-2 individuals from the cross, Huangzao 4 X Ye 107. The 184 F-3 families were evaluated in the field under well-watered and drought-stressed regimes in Shanxi Province of China. The objectives of the study were to identify genetic segments responsible for the expression of anthesis-silking interval (ASI), ear setting and grain yield, and to examine if the quantitative trait loci (QTLs) for ASI or yield components can be used in marker-assisted selection (MAS) to improve grain yield under drought conditions. Results showed that under well-watered and drought-stressed regimes, three and two QTLs involved in the expression of ASI were detected on chromosomes 1, 2 and 3, and 2 and 5, respectively. Under well-watered regime, two QTLs for ear setting were detected on chromosomes 3 and 6, explaining about 19.9% of the phenotypic variance, and displayed additive and partial dominant effects, respectively. Under drought-stressed condition, four QTLs for ear setting were detected on chromosomes 3, 7 and 10, which were responsible for interpreting 60.4% of the phenotypic variance, and showed dominant or partial dominant effects. Under well-watered condition, four QTLs controlling grain yield were identified on chromosomes 3, 6 and 7, while five QTLs were identified under drought stress on chromosomes 1, 2, 4 and 8. The gene action was of additive or partial dominant effects, and each QTL could explain 7.3% to 22.0% of the phenotypic variance, respectively. Under drought conditions, ASI and ear setting percentage were highly correlated with grain yield, which can be used as secondary traits for grain yield selection. Based on linked markers detected and gene action analyzed, an MAS strategy for yield improvement under drought condition could be established, which consists of QTLs contributing to decreased ASI and to increased ear setting and grain yield, respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 31271678)the Jiangsu Agricultural Scientific Self-Innovation Fund (Grant No. CX[11]4023)the Super Rice Breeding and Demonstration Program of the Ministry of Agriculture in China
文摘Grain size traits, including grain length, grain width and grain thickness, are controlled by quantitative trait loci (QTLs). Many QTLs relating to rice grain size traits had been reported, but their control mechanisms have not yet been elucidated. A recombinant inbred line (RIL) population of 240 lines, deriving from a cross between TD70, an extra-large grain size japonica line with 80 g of 1000-grain weight, and Kasalath, a small grain size indica variety, were constructed and used to map grain size QTLs to a linkage map by using 141 SSR markers in 2010 and 2011. Five QTLs for grain length, six for grain width and seven for grain thickness were detected distributing over chromosomes 2, 3, 5, 7, 9 and 12. Seven QTLs, namely qGL3.1, qGW2, qGW2.2, qGW5.1, qGW5.2, qGT2.3 and qGT3.1, were detected in either of the two years and explained for 56.19%, 4.42%, 29.41%, 10.37%, 7.61%, 21.19% and 17.06% of the observed phenotypic variances on average, respectively. The marker interval RM1347-RM5699 on chromosome 2 was found common for grain length, grain width and grain thickness; qGL3.1 and qGT3.1 were mapped to the same interval RM6080-RM6832 on chromosome 3. All 18 QTL alleles were derived from the large grain parent TD70. Most of the QTLs mapped in the present study were found the same as the genes previously cloned (GW2, GS3 or qGL3, GW5 and GS5), and several were the same as the QTLs (GS7 and qGL-7) previously mapped. Three QTLs, qGL2.2 on chromosome 2, qGW9 and qGT9 on chromosome 9, were first detected. These results laid a foundation for further fine mapping or cloning of these QTLs.
文摘为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分析,并基于DH群体的55K芯片数据进行籽粒相关性状QTL检测。结果表明,多元回归分析中,粒宽对千粒质量的贡献最大。通过完备区间作图对籽粒性状进行QTL定位,除6D和7B染色体外,其他19条染色体上共检测到69个有关籽粒性状的QTL,包括24个千粒质量QTL、28个粒长QTL、17个粒宽QTL,单个QTL的表型解释率为6.87%~27.74%。其中,7A染色体上粒长相关的Qgl.ahau-7A.1在7个环境及BLUP下均被检测到,表型解释率为9.48%~22.26%,加性效应为0.11~0.21 mm,物理区间4.91 Mb(AX-110430243~AX-110442528),可能为新的主效QTL。因此,Qgl.ahau-7A.1位点可作为后续精细定位和分子标记辅助育种重点关注的区域。