Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,...Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures.展开更多
The gradient porous Ti3Zr2Sn3Mo25Nb(TLM)alloy rods were fabricated through sintering the alloyed powder to a solid core.The porous sample was then modified by a Micro Arc Oxidation(MAO)treatment in an electrolyte cont...The gradient porous Ti3Zr2Sn3Mo25Nb(TLM)alloy rods were fabricated through sintering the alloyed powder to a solid core.The porous sample was then modified by a Micro Arc Oxidation(MAO)treatment in an electrolyte containing calcium and phosphate,a hydrothermal treatment enabled secondary microporous hydroxyapatite(HA)coating,and a further bone morphogenetic protein-2(BMP-2)loading treatment through immersion and freeze-drying.The treatment led to an orderly secondary microporous coating containing HA nano-particles and evenly distributed BMP-2 in the porous coatings.As a result,osteoblasts could adhere and grow well on the coatings with a high cell adhesion rate and cell functional activity.The in-situ shear testing indicated that the interfacial strength had been enhanced significantly.Improvement of the bond formation and osseointegration with the titanium implant is attributed to increased surface area for the cell to attach,creating voids for the cell to grow in,and activating titanium surface by introducing bioactive ingredients such as HA and BMP-2.展开更多
The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless...The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem, flexible 'iso-elastic' stem, one-dimensional Functionally Graded Material (FGM) stern and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis. The distributions of bone density, von Mises stress, and interface shear stress were obtained. The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials, thus the host bone is well preserved. Accordingly, the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view. The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants, which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.展开更多
Introducing N_2 during sputtering and pre-oxidation of substrate were investigated to improve the adhesion of sputtered TiC coating to steel substrate. The results show that yeactive gas N_2 increases the adhesion of ...Introducing N_2 during sputtering and pre-oxidation of substrate were investigated to improve the adhesion of sputtered TiC coating to steel substrate. The results show that yeactive gas N_2 increases the adhesion of TiC coating to steel because of a graded interface existing between coating and substrate. The interaction of discharge plasma with the surface of substrate was discussed. Pre-oxidation of substrate is effective for improving the adhesion due to the fomation of FeTi0_3 which appeared as an inteylayer between coating and pre-oxidized substrate.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12104291)。
文摘Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures.
基金financial support of the National Natural Science Foundation of China(32071327)National Key Research and Development Program of China(2016YFC1102003)+2 种基金International Science and Technology Cooperation Base of Shaanxi Province(2017GHJD-014)Science and Technology Program of Shaanxi Province(2019GY-200)Key Research and Development Program of Shaanxi Province(2019ZDLSF03-06)。
文摘The gradient porous Ti3Zr2Sn3Mo25Nb(TLM)alloy rods were fabricated through sintering the alloyed powder to a solid core.The porous sample was then modified by a Micro Arc Oxidation(MAO)treatment in an electrolyte containing calcium and phosphate,a hydrothermal treatment enabled secondary microporous hydroxyapatite(HA)coating,and a further bone morphogenetic protein-2(BMP-2)loading treatment through immersion and freeze-drying.The treatment led to an orderly secondary microporous coating containing HA nano-particles and evenly distributed BMP-2 in the porous coatings.As a result,osteoblasts could adhere and grow well on the coatings with a high cell adhesion rate and cell functional activity.The in-situ shear testing indicated that the interfacial strength had been enhanced significantly.Improvement of the bond formation and osseointegration with the titanium implant is attributed to increased surface area for the cell to attach,creating voids for the cell to grow in,and activating titanium surface by introducing bioactive ingredients such as HA and BMP-2.
基金This work is supported by the National Natural Science Foundation of China (Nos. 10832012, 10872061 and 10972090) and Scientific Advancing Front and Interdiscipline Innovation Project of Jilin University (No. 200903169).
文摘The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem, flexible 'iso-elastic' stem, one-dimensional Functionally Graded Material (FGM) stern and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis. The distributions of bone density, von Mises stress, and interface shear stress were obtained. The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials, thus the host bone is well preserved. Accordingly, the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view. The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants, which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.
文摘Introducing N_2 during sputtering and pre-oxidation of substrate were investigated to improve the adhesion of sputtered TiC coating to steel substrate. The results show that yeactive gas N_2 increases the adhesion of TiC coating to steel because of a graded interface existing between coating and substrate. The interaction of discharge plasma with the surface of substrate was discussed. Pre-oxidation of substrate is effective for improving the adhesion due to the fomation of FeTi0_3 which appeared as an inteylayer between coating and pre-oxidized substrate.