An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH2 labeled,single strand DNA(NH2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified ...An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH2 labeled,single strand DNA(NH2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified Au electrode(diazo-thiourea/GNM/Au).Gold nano-particles expand the electrode surface area and increase the amount of immobilized thiourea and single stranded DNA(ssDNA) onto the electrode surface.Diazo-thiourea film provides a surface with high conductibility for electron transfer and a bed for the covalent coupling of NH2-ssDNA onto the electrode surface.The immobilization and hybridization of the probe DNA on the modified electrode is studied by differential pulse voltammetry(DPV) using methylene blue(MB) as a well-known electrochemical hybridization indicator.The linear range for the determination of complementary target ssDNA is from 9.5(±0.1) × 10^-13 mol/L to1.2(±0.2) x 10^-9 mol/L with a detection limit of 1.2(±0.1) 〉 10^-13 mol/L.展开更多
Hyper thermal therapy using lasers is emerging as a new promising route for the cancer treatment. The tumor can be directly heated by the radiation or indirectly using gold nano particles based on plasmon resonance ph...Hyper thermal therapy using lasers is emerging as a new promising route for the cancer treatment. The tumor can be directly heated by the radiation or indirectly using gold nano particles based on plasmon resonance phenolmenon. These two possibilities are explored here by solving the space and time dependent bio-heat equation under different conditions. The knowledge of temperature profiles in the tumor region helps to bypass the painful placement of sensors for monitoring tumor’s heating by the laser. Important properties which could be useful for developing an efficient tumor therapy are introduced for the first time. It is found that the effects of metabolism consist essentially in a redefinition of the blood temperature which increases proportional to the heat of metabolism. Blood perfusion in a given tissue leads to a new characteristic length of order one or two centimeters and a blood convection parameter typically of order 30 W·m-1·K-1. Effects of these parameters are scrutinized within the resolution of the bio-heat equation under a variety of conditions. In general, space modulations of the temperature throughout biological tissues are weak but front kinetics are quite fast. Specific examples show the way to monitor the temperature rise taking into account the tumor’s nature and size.展开更多
文摘An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH2 labeled,single strand DNA(NH2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified Au electrode(diazo-thiourea/GNM/Au).Gold nano-particles expand the electrode surface area and increase the amount of immobilized thiourea and single stranded DNA(ssDNA) onto the electrode surface.Diazo-thiourea film provides a surface with high conductibility for electron transfer and a bed for the covalent coupling of NH2-ssDNA onto the electrode surface.The immobilization and hybridization of the probe DNA on the modified electrode is studied by differential pulse voltammetry(DPV) using methylene blue(MB) as a well-known electrochemical hybridization indicator.The linear range for the determination of complementary target ssDNA is from 9.5(±0.1) × 10^-13 mol/L to1.2(±0.2) x 10^-9 mol/L with a detection limit of 1.2(±0.1) 〉 10^-13 mol/L.
文摘Hyper thermal therapy using lasers is emerging as a new promising route for the cancer treatment. The tumor can be directly heated by the radiation or indirectly using gold nano particles based on plasmon resonance phenolmenon. These two possibilities are explored here by solving the space and time dependent bio-heat equation under different conditions. The knowledge of temperature profiles in the tumor region helps to bypass the painful placement of sensors for monitoring tumor’s heating by the laser. Important properties which could be useful for developing an efficient tumor therapy are introduced for the first time. It is found that the effects of metabolism consist essentially in a redefinition of the blood temperature which increases proportional to the heat of metabolism. Blood perfusion in a given tissue leads to a new characteristic length of order one or two centimeters and a blood convection parameter typically of order 30 W·m-1·K-1. Effects of these parameters are scrutinized within the resolution of the bio-heat equation under a variety of conditions. In general, space modulations of the temperature throughout biological tissues are weak but front kinetics are quite fast. Specific examples show the way to monitor the temperature rise taking into account the tumor’s nature and size.