A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimi...A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.展开更多
基金supported by the National Natural Science Foundation of China(6076600161105004)+1 种基金the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ14110)the Program for Innovative Research Team of Guilin University of Electronic Technology(IRTGUET)
文摘A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.