Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their ma...Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineagetracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery.展开更多
Objective:To test the effects of salidroside on formation and growth of glioma together with tumor microenvironment.Methods:Salidroside extracted from Rhodiola rosea was purified and treated on human glioma cells U2...Objective:To test the effects of salidroside on formation and growth of glioma together with tumor microenvironment.Methods:Salidroside extracted from Rhodiola rosea was purified and treated on human glioma cells U251 at the concentration of 20 μg/mL.3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT) assay for cytotoxicity and flow cytometry (FCM) for cell cycle analysis were performed.Then for in vivo study,xenotransplantation tumor model in nude mice was generated and treated with salidroside at the concentration of 50 mg/kg.d for totally 20 d.Body weight and tumor size were detected every 2 d after the treatment.The levels of 8-isoprostane,superoxide dismutase (SOD) and malondialdehyde (MDA),special markers for oxidative stress,were detected while immunofluoresence staining was performed for astrocyte detection.Results:For in vitro study,salidroside could decrease the viability of human glioma cells U251 and the growth of U251 cells at G0/G1 checkpoint during the cell cycle.For in vivo study,salidroside could also inhibit the growth of human glioma tissue in nude mice.The body weight of these nude mice treated with salidroside did not decrease as quickly as control group.In the tumor xenotransplantation nude mice model,mice were found of inhibition of oxidative stress by detection of biomarkers.Furthermore,overgrowth of astrocytes due to the stimulation of oxidative stress in the cortex of brain was inhibited after the treatment of salidroside.Conclusions:Salidroside could inhibit the formation and growth of glioma both in vivo and in vitro and improve the tumor microenvironment via inhibition of oxidative stress and astrocytes.展开更多
Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy(RT). However, there is no effective drug delivery system to effectively ov...Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy(RT). However, there is no effective drug delivery system to effectively overcome the blood–brain barrier(BBB). The aim of this study was to develop a gene delivery system by using the BBB and glioma dual-targeting and microenvironment-responsive micelles(ch-Kn(s-s)R8-An) to deliver Dbait into glioma for RT. Angiopep-2 can target the low-density lipoprotein receptor-related protein-1(LRP1) that is overexpressed on brain capillary endothelial cells(BCECs) and glioma cells. In particular, due to upregulated matrix metalloproteinase 2(MMP-2) in the tumor microenvironment, we utilized MMP-2-responsive peptides as the enzymatically degradable linkers to conjugate angiopep-2. The results showed that ch-Kn(s-s)R8-An micelles maintained a reasonable size(80–160 nm) with a moderate distribution and a decreased mean diameter from the cross-linking as well as exhibited low critical micelle concentration(CMC) with positive surface charge, ranging from 15 to40 mV. The ch-K5(s-s)R8-An/pEGFP showed high gene transfection efficiency in vitro, improved uptake in glioma cells and good biocompatibility in vitro and in vivo. In addition, the combination of ch-K5(s-s)R8-An/Dbait with RT significantly inhibited the growth of U251 cells in vitro. Thus, ch-K5(s-s)R8-An/Dbait may prove to be a promising gene delivery system to target glioma and enhance the efficacy of RT on U251 cells.展开更多
Many cancers have similar aberrations in various signaling cascades with crucial roles in cellular proliferation,differentiation,and morphogenesis.Dysregulation of signal cascades that play integral roles during early...Many cancers have similar aberrations in various signaling cascades with crucial roles in cellular proliferation,differentiation,and morphogenesis.Dysregulation of signal cascades that play integral roles during early cellular development is well known to be a central feature of many malignancies.One such signaling cascade is the Wnt/b-catenin pathway,which has a profound effect on stem cell proliferation,migration,and differentiation.This pathway is dysregulated in numerous cell types,underscoring its global oncogenetic potential.This review highlights regulators and downstream effectors of this receptor cascade and addresses the increasingly apparent crosstalk of Wnt with other tumorigenic signaling pathways.As understanding of the genetic and epigenetic changes unique to these malignancies increases,identifying the regulatory mechanisms unique to the Wnt/b-catenin pathway and similarly aberrant receptor pathways will be imperative.展开更多
基金Supported by The Medical Scientist Training Program at NYU School of Medicine to Modrek ASNYSTEM Institutional training grant#CO26880 to Bayin NS+1 种基金NIH/NINDS(1 R21 NS087241-01)the NYU Cancer Institute Developmental Projects Program and the NYU Clinical and Translational Science Institute(NYU CTSA grant#UL1TR000038 from the National Center for the Advancement of Translational Science NCATS,NIH)to Placantonakis DG
文摘Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineagetracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery.
基金supported by the National Natural Science Foundation of China(No.81141080)Jiangsu Provincial Natural Science Foundation(SBK201340596)
文摘Objective:To test the effects of salidroside on formation and growth of glioma together with tumor microenvironment.Methods:Salidroside extracted from Rhodiola rosea was purified and treated on human glioma cells U251 at the concentration of 20 μg/mL.3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT) assay for cytotoxicity and flow cytometry (FCM) for cell cycle analysis were performed.Then for in vivo study,xenotransplantation tumor model in nude mice was generated and treated with salidroside at the concentration of 50 mg/kg.d for totally 20 d.Body weight and tumor size were detected every 2 d after the treatment.The levels of 8-isoprostane,superoxide dismutase (SOD) and malondialdehyde (MDA),special markers for oxidative stress,were detected while immunofluoresence staining was performed for astrocyte detection.Results:For in vitro study,salidroside could decrease the viability of human glioma cells U251 and the growth of U251 cells at G0/G1 checkpoint during the cell cycle.For in vivo study,salidroside could also inhibit the growth of human glioma tissue in nude mice.The body weight of these nude mice treated with salidroside did not decrease as quickly as control group.In the tumor xenotransplantation nude mice model,mice were found of inhibition of oxidative stress by detection of biomarkers.Furthermore,overgrowth of astrocytes due to the stimulation of oxidative stress in the cortex of brain was inhibited after the treatment of salidroside.Conclusions:Salidroside could inhibit the formation and growth of glioma both in vivo and in vitro and improve the tumor microenvironment via inhibition of oxidative stress and astrocytes.
基金the financial support received from the National Natural Science Foundation of China(No.81472349,81302714and 81201809,China)the Natural Science Foundation of Shanghai(No.14ZR1433300,China)+3 种基金the Interdisciplinary Program of Shanghai Jiao Tong University(No.0507N17014,China)the Innovation Program of Shanghai Municipal Education Commission(No.15ZZ041,China)Natural Science Foundation of Zhejiang Province(No.LQ12H30005,China)the Public Welfare Technology Application Research Project(No.LGF18H160034,China)
文摘Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy(RT). However, there is no effective drug delivery system to effectively overcome the blood–brain barrier(BBB). The aim of this study was to develop a gene delivery system by using the BBB and glioma dual-targeting and microenvironment-responsive micelles(ch-Kn(s-s)R8-An) to deliver Dbait into glioma for RT. Angiopep-2 can target the low-density lipoprotein receptor-related protein-1(LRP1) that is overexpressed on brain capillary endothelial cells(BCECs) and glioma cells. In particular, due to upregulated matrix metalloproteinase 2(MMP-2) in the tumor microenvironment, we utilized MMP-2-responsive peptides as the enzymatically degradable linkers to conjugate angiopep-2. The results showed that ch-Kn(s-s)R8-An micelles maintained a reasonable size(80–160 nm) with a moderate distribution and a decreased mean diameter from the cross-linking as well as exhibited low critical micelle concentration(CMC) with positive surface charge, ranging from 15 to40 mV. The ch-K5(s-s)R8-An/pEGFP showed high gene transfection efficiency in vitro, improved uptake in glioma cells and good biocompatibility in vitro and in vivo. In addition, the combination of ch-K5(s-s)R8-An/Dbait with RT significantly inhibited the growth of U251 cells in vitro. Thus, ch-K5(s-s)R8-An/Dbait may prove to be a promising gene delivery system to target glioma and enhance the efficacy of RT on U251 cells.
基金S.Huang is supported by grants from the National Cancer Institute(R01CA157933 and R01CA182684).
文摘Many cancers have similar aberrations in various signaling cascades with crucial roles in cellular proliferation,differentiation,and morphogenesis.Dysregulation of signal cascades that play integral roles during early cellular development is well known to be a central feature of many malignancies.One such signaling cascade is the Wnt/b-catenin pathway,which has a profound effect on stem cell proliferation,migration,and differentiation.This pathway is dysregulated in numerous cell types,underscoring its global oncogenetic potential.This review highlights regulators and downstream effectors of this receptor cascade and addresses the increasingly apparent crosstalk of Wnt with other tumorigenic signaling pathways.As understanding of the genetic and epigenetic changes unique to these malignancies increases,identifying the regulatory mechanisms unique to the Wnt/b-catenin pathway and similarly aberrant receptor pathways will be imperative.