目的建立基于广义偏线性模型(generalized partial linear model,GPLM)的,包括危险因素和中医证候要素内容的绝经后骨质疏松症(postmenopausal osteoporosis,PMOP)风险判别模型。方法在获取1740例社区PMOP高危人群危险因素及证候问卷调...目的建立基于广义偏线性模型(generalized partial linear model,GPLM)的,包括危险因素和中医证候要素内容的绝经后骨质疏松症(postmenopausal osteoporosis,PMOP)风险判别模型。方法在获取1740例社区PMOP高危人群危险因素及证候问卷调查数据基础上,筛选出与PMOP发病相关的重要危险因素和中医症状为协变量,以骨密度定性诊断为结局变量,建立基于GPLM的PMOP判别模型。结果 GPLM模型线性部分参数估计提示:是否绝经、体重指数、下肢抽筋、下肢骨痛、绝经年限(线性效应)具有统计意义(P<0.05);模型非线性部分参数估计提示:绝经年限(非线性效应)具有统计意义(P<0.05)。与logistic回归模型相比,拟合GPLM模型时加入了"绝经年限"的非线性效应,其AUC值为0.7971,具有统计学意义(χ2=21.9162,P<0.001)。结论绝经年限与PMOP发病之间存在非线性效应。将西医危险因素和中医症状相结合,建立基于GPLM的PMOP判别模型,反映病证结合特点,与logistic回归模型相比,具有更好的判别准确性。展开更多
This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allo...This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allowing exploration of the nonlinear relationship between a certain covariate and the response function. Asymptotic properties of the proposed sieve MLEs are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. Moreover, the estimators of the unknown parameters are asymptotically normal and efficient, and the estimator of the nonparametric function has an optimal convergence rate.展开更多
基金The talent research fund launched (3004-893325) of Dalian University of Technologythe NNSF (10271049) of China.
文摘This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allowing exploration of the nonlinear relationship between a certain covariate and the response function. Asymptotic properties of the proposed sieve MLEs are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. Moreover, the estimators of the unknown parameters are asymptotically normal and efficient, and the estimator of the nonparametric function has an optimal convergence rate.