期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于混沌粒子群-高斯过程回归的饱和负荷概率预测模型 被引量:29
1
作者 彭虹桥 顾洁 +1 位作者 胡玉 宋柄兵 《电力系统自动化》 EI CSCD 北大核心 2017年第21期25-32,155,共9页
饱和负荷预测能有效预估区域电网的发展方向和最终规模,为电网规划及电力市场中长期交易提供指导。针对饱和负荷预测不确定性强、时间跨度大的特点,文中采用基于高斯过程回归(GPR)的概率预测模型进行饱和负荷预测,并通过改进混沌粒子群... 饱和负荷预测能有效预估区域电网的发展方向和最终规模,为电网规划及电力市场中长期交易提供指导。针对饱和负荷预测不确定性强、时间跨度大的特点,文中采用基于高斯过程回归(GPR)的概率预测模型进行饱和负荷预测,并通过改进混沌粒子群算法(MCPSO)实现以和方差(SSE)最小为目标的模型超参数优化求解;在综合考虑饱和负荷影响因素随机性的基础上,建立了改进混沌粒子群—高斯过程回归(MCPSO-GPR)饱和负荷预测模型,并在多情景下利用上述模型进行饱和负荷预测,同时结合饱和判据得到多情景下饱和负荷的规模和时间。算例分析表明,所述模型不仅具有较高的预测精度,而且可增强预测的弹性。 展开更多
关键词 饱和负荷 负荷预测 高斯过程回归 混沌粒子群优化 概率预测
下载PDF
基于FCM与集成高斯过程回归的赖氨酸发酵软测量 被引量:9
2
作者 嵇小辅 张翔 《智能系统学报》 CSCD 北大核心 2015年第1期156-162,共7页
为解决赖氨酸发酵过程中菌体浓度难以在线检测的难题,提出一种基于模糊C均值聚类(FCM)与集成高斯过程回归(GPR)的软测量建模方法。针对典型生物发酵过程可分为延滞期、指数生长期、稳定期、死亡期4个反应周期的特点,采用模糊C均值聚类... 为解决赖氨酸发酵过程中菌体浓度难以在线检测的难题,提出一种基于模糊C均值聚类(FCM)与集成高斯过程回归(GPR)的软测量建模方法。针对典型生物发酵过程可分为延滞期、指数生长期、稳定期、死亡期4个反应周期的特点,采用模糊C均值聚类算法对样本集进行聚类分析以形成若干子样本集;对每个子样本集分别采用高斯过程回归训练时,为提高GPR模型的泛化能力,利用Adaboost算法提升GPR模型,分别在各子集建立集成GPR软测量子模型;采用欧氏距离计算新样本点对应于每一子模型的隶属度;加权求和获得最终的软测量模型的预测输出。基于氨基酸类典型菌种L-赖氨酸反应过程菌体浓度参数预测的试验研究表明:与全局单一GPR模型、集成GPR模型和基于FCM与多GPR模型相比,所建立的基于FCM与集成GPR软测量模型拟合精度高,泛化能力强,较好地满足了赖氨酸发酵过程的控制要求。 展开更多
关键词 高斯过程回归(gpr) 模糊C均值聚类(FCM) ADABOOST算法 L-赖氨酸 软测量 欧氏距离 隶属度 加权求和
下载PDF
基于高斯过程回归的机翼/短舱一体化气动优化 被引量:4
3
作者 季廷炜 莫邵昌 +3 位作者 谢芳芳 张鑫帅 蒋逸阳 郑耀 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第3期632-642,共11页
为了解决机翼/短舱一体化气动设计的高维非线性优化问题,基于高斯过程回归(GPR)模型提出新型优化设计方法.采用类别形状函数变换(CST)方法对机翼/短舱一体化构型中的翼型进行几何参数化建模;通过控制机翼形状参数、短舱形状参数和短舱... 为了解决机翼/短舱一体化气动设计的高维非线性优化问题,基于高斯过程回归(GPR)模型提出新型优化设计方法.采用类别形状函数变换(CST)方法对机翼/短舱一体化构型中的翼型进行几何参数化建模;通过控制机翼形状参数、短舱形状参数和短舱安装参数实现机翼/短舱构型变形,该参数化建模过程共计包含50个设计参数.通过GPR模型构建机翼/短舱设计参数与气动性能之间的代理模型,并采用贝叶斯优化(BO)算法实现代理模型的自更新和最优气动外形的获取.结果表明:优化后一体化构型的阻力系数下降了10.95%,通过流场分析发现机翼外形和短舱外形的优化改善了表面流场结构,短舱安装位置的优化减弱了机翼和短舱间的气动干扰. 展开更多
关键词 机翼/短舱 气动优化设计 参数化建模 高斯过程回归(gpr) 贝叶斯优化(BO)
下载PDF
基于改进集成经验模态分解和高斯过程回归的锂离子电池剩余容量及寿命预测方法 被引量:4
4
作者 向铭 何怡刚 张慧 《电测与仪表》 北大核心 2023年第9期27-33,共7页
锂离子电池在储能电站中为消纳可再生能源作出了重要贡献,其运行的稳定性和可靠性受到了研究人员的持续关注。为了解决锂离子电池容量及剩余寿命的预测和抑制测量过程中因各种外界因素引起的噪声,提出了一种基于改进的集成经验模态分解M... 锂离子电池在储能电站中为消纳可再生能源作出了重要贡献,其运行的稳定性和可靠性受到了研究人员的持续关注。为了解决锂离子电池容量及剩余寿命的预测和抑制测量过程中因各种外界因素引起的噪声,提出了一种基于改进的集成经验模态分解MEEMD(Modified Ensemble Empirical Mode Decomposition)去噪和经贝叶斯优化的高斯过程回归BO-GPR(Gaussian process regression optimized by Bayesian optimization algorithm)的锂离子电池容量及剩余寿命预测方法。利用MEEMD方法识别并去除原始测量数据中的噪声分量。利用BO-GPR方法预测锂离子电池容量及剩余寿命,其中贝叶斯优化方法对高斯过程回归的部分超参数进行了进一步寻优。文章基于美国国家航空航天局研究中心提供的锂离子电池测量数据进行了预测实验,结果表明,该方法能够有效去除噪声信号,选取的协方差函数和超参数组合达成的预测效果优于初始GPR模型,证明了其有效性。 展开更多
关键词 锂离子电池 容量及剩余寿命 改进的集成经验模态分解 高斯过程回归 贝叶斯优化
下载PDF
基于高斯过程回归方法的研究及应用 被引量:7
5
作者 王芳黎 《工业控制计算机》 2015年第11期76-78,81,共4页
高斯过程回归方法是近年发展起来的一种机器学习方法,适用于处理高维数、小样本和非线性等复杂回归问题。它的核心是协方差函数,而传统高斯过程回归则是任意选择一个核函数,通过研究不同的基本的协方差函数的组合来比较得到建模性能最... 高斯过程回归方法是近年发展起来的一种机器学习方法,适用于处理高维数、小样本和非线性等复杂回归问题。它的核心是协方差函数,而传统高斯过程回归则是任意选择一个核函数,通过研究不同的基本的协方差函数的组合来比较得到建模性能最好的协方差函数。改进算法的有效性和准确性将通过实验进一步论证。 展开更多
关键词 高斯过程回归 参数优化 协方差函数 超参数 机器学习
下载PDF
基于刚度模型和高斯过程回归模型的重载工业机器人分步标定方法
6
作者 汤烨 陈庆盈 +1 位作者 周耀华 李研彪 《高技术通讯》 CAS 北大核心 2024年第8期885-894,共10页
针对串联工业机器人由于关节柔性导致的重载下绝对定位精度较低的问题,提出了一种机器人定位误差分步标定方法。采用局部指数积模型对机器人进行几何误差标定。提出了一种基于建模和机器学习的非几何误差标定方法。在该部分中,首先建立... 针对串联工业机器人由于关节柔性导致的重载下绝对定位精度较低的问题,提出了一种机器人定位误差分步标定方法。采用局部指数积模型对机器人进行几何误差标定。提出了一种基于建模和机器学习的非几何误差标定方法。在该部分中,首先建立了机器人的刚度模型对非几何误差中最主要的变形误差进行标定,然后采用数据驱动的高斯过程回归(GPR)模型对残余误差进行标定。实验结果表明,该方法可以有效提高机器人带载下的绝对定位精度,并且具有位置精度不随载荷变化而产生明显波动的优点。 展开更多
关键词 工业机器人 标定 指数积 刚度建模 高斯过程回归(gpr)
下载PDF
翼吊式飞机跨声速气动特性的不确定性分析
7
作者 莫邵昌 张鑫帅 +2 位作者 谢芳芳 季廷炜 郑耀 《气体物理》 2024年第4期27-38,共12页
针对随机不确定性可能带来翼吊式飞机严重气动性能波动的问题,提出了一种基于主动学习加点策略的Gauss过程回归(Gaussian process regression,GPR)代理模型方法用于不确定性分析,该主动学习加点策略能够有效地降低模型不确定性,提高不... 针对随机不确定性可能带来翼吊式飞机严重气动性能波动的问题,提出了一种基于主动学习加点策略的Gauss过程回归(Gaussian process regression,GPR)代理模型方法用于不确定性分析,该主动学习加点策略能够有效地降低模型不确定性,提高不确定预测的精度。关注来流不确定性输入,分别使用Smolyak稀疏网格多项式混沌展开(polynomial chaos expansion,PCE)方法和基于主动学习加点策略的GPR代理模型方法,结合Sobol灵敏度分析对翼-身-短舱-挂架几何进行了不确定性分析。结果表明,在跨声速条件下,攻角和Mach数的不确定性会引起翼吊式飞机升力系数和阻力系数的剧烈波动,其中升力系数的波动同时受攻角和Mach数的影响,阻力系数的波动主要由Mach数决定。 展开更多
关键词 不确定性分析 Gauss过程回归(gpr) 多项式混沌展开(PCE) 灵敏度分析 气动性能
下载PDF
基于高斯过程回归和遗传算法的翼型优化设计 被引量:6
8
作者 常林森 张倩莹 郭雪岩 《航空动力学报》 EI CAS CSCD 北大核心 2021年第11期2306-2316,共11页
针对高升阻比风力机翼型前缘曲率半径较大的问题,传统的翼型参数化方法前缘控制能力不足,且基于面元法XFOIL预测精度差的问题,利用增强类函数/形函数转换(CST)参数化方法控制翼型的形状变化、拉丁超立方实验设计、计算流体力学(CFD)流... 针对高升阻比风力机翼型前缘曲率半径较大的问题,传统的翼型参数化方法前缘控制能力不足,且基于面元法XFOIL预测精度差的问题,利用增强类函数/形函数转换(CST)参数化方法控制翼型的形状变化、拉丁超立方实验设计、计算流体力学(CFD)流场计算模块、高斯过程回归模型和遗传算法,提出了基于高可信度Reynolds average Navier-Stocks(RANS)和高斯回归模型辅助遗传算法的翼型优化设计方法。结果表明:基于高斯回归模型的翼型优化方法,可以将优化所用CFD计算次数降低一阶,从而大幅度提升优化设计效率。由标准算例超临界翼型RAE2822的降阻设计表明,在百次量级的CFD次数阻力降低43.16%,激波被削弱且升力、力矩和面积严格满足约束。由风力机翼型NACA64618的最大化升阻比优化设计表明,所设计翼型不仅在设计攻角和副设计攻角处升阻比大大增加,在整个小攻角范围内其气动性能都得到了提升,且两个主设计点,无不良阻力的产生。 展开更多
关键词 高斯过程回归(gpr) CST参数化方法 遗传算法 贝叶斯优化 翼型设计
原文传递
距离相关系数融合GPR模型的卫星异常检测方法 被引量:6
9
作者 孙宇豪 李国通 张鸽 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第4期844-852,共9页
卫星在轨运行期间,遥测数据表现形式通常为多维时间序列。高斯过程回归(GPR)模型可以为重要的遥测参数提供动态门限,及时发现隐藏在工程阈值内的故障征兆,但是高维卫星数据使得GPR模型具有局限性。因此,为获取与多个遥测参数相关的动态... 卫星在轨运行期间,遥测数据表现形式通常为多维时间序列。高斯过程回归(GPR)模型可以为重要的遥测参数提供动态门限,及时发现隐藏在工程阈值内的故障征兆,但是高维卫星数据使得GPR模型具有局限性。因此,为获取与多个遥测参数相关的动态门限,在GPR模型的基础上,融合距离相关系数对预测变量进行选择,减少信息冗余和计算量,提高模型的可解释性,并估计模型的泛化误差以设置更合理的预测区间,提高模型的泛化能力,检测数据流的持续异常。对实际在轨卫星数据进行仿真实验,验证了距离相关系数融合GPR模型的卫星异常检测方法可以在卫星故障早期检测到数据异常,而且提高了模型的预测性能,降低了虚警率。 展开更多
关键词 卫星异常检测 高斯过程回归(gpr) 距离相关系数 变量选择 泛化误差
下载PDF
融合高斯过程回归的UKF估计方法 被引量:6
10
作者 叶文 蔡晨光 +1 位作者 杨平 李建利 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第6期1081-1087,共7页
高精度滤波估计是SINS/GNSS组合导航系统的关键技术之一,其估计精度直接影响了导航精度。传统滤波估计方法一般只基于惯导误差模型,未考虑惯导误差模型不确定性的影响。针对此问题,提出了一种采用高斯过程回归(GPR)增强无迹卡尔曼滤波(U... 高精度滤波估计是SINS/GNSS组合导航系统的关键技术之一,其估计精度直接影响了导航精度。传统滤波估计方法一般只基于惯导误差模型,未考虑惯导误差模型不确定性的影响。针对此问题,提出了一种采用高斯过程回归(GPR)增强无迹卡尔曼滤波(UKF)预测和估计能力的高精度滤波估计方法。一方面,能在有限的训练数据条件下通过UKF估计误差状态量;另一方面,高斯过程既考虑了噪声,也考虑了UKF的不确定性。将所提方法应用于SINS/GNSS组合导航系统中,车载实验结果表明,所提方法能有效提高滤波估计精度。 展开更多
关键词 SINS/GNSS组合导航 高精度滤波估计 惯导误差模型 无迹卡尔曼滤波(UKF) 高斯过程回归(gpr)
下载PDF
基于GPR模型的气象因素对经济高质量发展的预测——以重庆市为例
11
作者 李勇 陈栏灵 李禹锋 《重庆工商大学学报(自然科学版)》 2024年第5期110-118,共9页
目的 针对经济社会与气象变化之间的联系越来越密切的现象,以及气象数据、经济高质量发展数据的复杂特征和传统模型的预测精度不足问题,提出从气象和经济高质量发展关联的视角出发,以统计学方法进行气象因素对经济高质量发展的预测。方... 目的 针对经济社会与气象变化之间的联系越来越密切的现象,以及气象数据、经济高质量发展数据的复杂特征和传统模型的预测精度不足问题,提出从气象和经济高质量发展关联的视角出发,以统计学方法进行气象因素对经济高质量发展的预测。方法 鉴于高斯过程回归模型对于高度非线性回归问题有很强的适应性,同时还能自适应获取最优超参数,并给出具有概率意义的预测结果,故将高斯过程回归模型引入气象对经济高质量发展的预测,采用7种不同核函数,并分别训练出最优超参数,通过均方误差比较择出预测效果最好的模型核函数及相应参数。结果 对重庆市气象与经济高质量发展历史观测数据构建高斯过程回归(GPR)模型,进行GPR建模,并进行预测误差分析,得到的结果表明:选用参数为8.091的常值核与缩放参数为9.454 5的RBF核组合而成的混合核作为最佳核函数的GPR模型,相较于K邻近回归模型、支持向量回归模型,误差更低,GPR模型预测点的y值绝对误差最大为0.548,最小为0.094,较为准确;模型真实值与预测值对比显示拟合效果较为良好。结论GPR模型运用于气象因素对经济高质量发展的预测分析具有优良性,并针对气象与经济高质量发展指数的关系特征,提出了加强气象预报、提高利用效率和精准化预测的有效建议。 展开更多
关键词 气象因子 经济高质量发展 高斯过程回归(gpr)
下载PDF
Robust Interval State Estimation for Distribution Systems Considering Pseudo-measurement Interval Prediction
12
作者 Xu Zhang Wei Yan +1 位作者 Meiqing Huo Hui Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期179-188,共10页
Interval state estimation(ISE)can estimate state intervals of power systems according to confidence intervals of predicted pseudo-measurements,thereby analyzing the impact of uncertain pseudo-measurements on states.Ho... Interval state estimation(ISE)can estimate state intervals of power systems according to confidence intervals of predicted pseudo-measurements,thereby analyzing the impact of uncertain pseudo-measurements on states.However,predicted pseudo-measurements have prediction errors,and their confidence intervals do not necessarily contain the truth values,leading to estimation biases of the ISE.To solve this problem,this paper proposes a pseudo-measurement interval prediction framework based on the Gaussian process regression(GPR)model,thereby improving the prediction accuracy of pseudo-measurement confidence intervals.Besides,a weight assignment strategy for improving the robustness of weighted least squares(WLS)ISE is proposed.This strategy quantifies the deviation between the pseudo-measurement intervals and their estimated intervals and assigns smaller weights to the pseudo-measurement intervals with larger deviations,thereby improving the estimation accuracy and robustness of the ISE.This paper adopts the data from the supervisory control and data acquisition(SCADA)system of the New York Independent System Operator(NYISO).It verifies the advantages of the GPR method for pseudo-measurement interval prediction by comparing it with the quantile regression and neural network methods.In addition,this paper demonstrates the effectiveness of the proposed weight assignment strategy through the IEEE 14-bus case.Finally,the differences in the estimation accuracy and the bad data identification between the robust interval state estimation and deterministic state estimation are discussed. 展开更多
关键词 Interval state estimation interval analysis pseudo-measurement gaussian process regression(gpr)
原文传递
考虑特征选择的短期光伏功率组合预测模型
13
作者 张赟宁 魏广军 《电力系统及其自动化学报》 CSCD 北大核心 2024年第8期122-132,共11页
针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regr... 针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regression)模型相结合的组合预测模型。首先,采用皮尔逊和斯皮尔曼相关系数对特征进行相关性分析,并进行初步筛选;接着,基于随机森林算法对特征进行重要性评价,并选取最优特征子集;然后,采用灰狼优化算法对高斯过程回归模型进行优化;最后,将最优特征子集输入到组合预测模型RFGWO-GPR中进行短期光伏功率预测。应用某光伏电站实测数据的仿真实验结果表明,提出的模型在不同天气条件下可以对特征进行有效选择,与未进行特征选择的单一模型相比,预测精度显著提高,并且明显优于其他优化算法与GPR模型组成的组合预测模型。 展开更多
关键词 光伏功率预测 特征选择 随机森林算法 灰狼优化算法 高斯过程回归
下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
14
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization gaussian process regression(gpr) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
下载PDF
一种针对异构设备和环境变化的室内定位算法 被引量:2
15
作者 孙顺远 于敬源 《吉林大学学报(理学版)》 CAS 北大核心 2023年第4期915-921,共7页
针对基于蓝牙指纹的室内定位中存在设备异构性和蓝牙信标节点发生变化的问题,提出一种针对异构设备和环境变化的室内定位算法.首先,利用普氏分析法对接收到的信号强度进行标准化处理,使用核极限学习机(kernel extreme learning machine,... 针对基于蓝牙指纹的室内定位中存在设备异构性和蓝牙信标节点发生变化的问题,提出一种针对异构设备和环境变化的室内定位算法.首先,利用普氏分析法对接收到的信号强度进行标准化处理,使用核极限学习机(kernel extreme learning machine,KELM)对标准化的指纹库建模,减少用户移动终端差异导致的信号强度差异;其次,当接入点(access point,AP)信号发生变化时,利用高斯过程回归重新校准该接入点信号,更新指纹库,消除接入点因信号衰弱、位置移动或环境变化导致的定位误差.测试分析结果表明:该算法能有效克服异构设备产生的影响,并更好地适应环境变化. 展开更多
关键词 室内定位 普氏分析法 异构设备 环境变化 高斯过程回归
下载PDF
基于GPR模型的用户量预测优化方法
16
作者 刘学浩 刘文学 +3 位作者 杨超三 祝文晶 宋玉 李金海 《系统工程与电子技术》 EI CSCD 北大核心 2024年第8期2721-2729,共9页
高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问... 高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法。在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估。实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R 2这4个评估指标方面均有提升,其中MBE至少提升了43.3%。 展开更多
关键词 高斯过程回归 用户量预测 滑动窗口 交叉验证 超参数优化
下载PDF
基于多模型融合策略的温室番茄光合速率预测方法
17
作者 刘潭 朱洪锐 +3 位作者 袁青云 王永刚 张大鹏 丁小明 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期337-345,共9页
温室番茄光合速率的准确预测对于番茄的生长和产量评估具有重要意义。然而,由于温室环境的复杂性和多变性,传统的光合速率预测模型往往难以满足精准预测的需求。因此,为了进一步提高预测模型的准确性和稳定性,本研究提出了一种基于多模... 温室番茄光合速率的准确预测对于番茄的生长和产量评估具有重要意义。然而,由于温室环境的复杂性和多变性,传统的光合速率预测模型往往难以满足精准预测的需求。因此,为了进一步提高预测模型的准确性和稳定性,本研究提出了一种基于多模型融合策略的温室番茄光合速率预测方法。首先,采集温湿度、光照强度、CO_(2)浓度不同组合下的番茄光合速率,构建样本集,并采用五折交叉验证法(Cross-Validation)对数据进行预处理。以预处理的数据为基础,分别基于粒子群优化支持向量机(PSO-SVR)、布谷鸟优化极限学习机(CS-ELM)和北方苍鹰优化高斯过程回归(NGO-GPR)算法建立番茄光合速率预测模型对光合速率进行初步预测,然后采用Stacking算法通过基于决策树的集成学习模型(XGBoost)组合各基础模型的预测结果,进而实现多模型融合。仿真分析结果表明,与单一预测模型相比,基于多模型融合的光合速率预测模型充分发挥了各基础模型的优势,可以进一步提高光合速率预测的准确性和稳定性,该模型验证集MAE为0.569 7μmol/(m^(2)·s),RMSE为0.721 4μmol/(m^(2)·s)。因此,本文提出的方法在温室作物光合速率预测方面具有一定的优势,可为温室番茄等作物光环境优化调控提供一定的理论基础和技术支撑。 展开更多
关键词 温室 番茄 光合速率预测 极限学习机 高斯过程回归 多模型融合
下载PDF
基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究 被引量:2
18
作者 刘金凤 陈浩玮 HERBERT Ho-Ching Iu 《电子与信息学报》 EI CSCD 北大核心 2023年第3期1111-1120,共10页
锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型... 锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型。首先利用等压降放电时间分析法,提取健康因子,利用VMD对其进行分解处理,挖掘数据内在信息,降低数据复杂度,并针对不同分量,利用不同协方差函数建立GPR预测模型,有效捕获了数据的长期下降趋势和短期再生波动。利用DAIPSO算法优化GPR模型,实现核函数超参数的优化,建立了更准确的退化关系模型,最终实现剩余使用寿命的准确预测,以及不确定性表征。最后利用NASA电池数据进行验证,离线预测结果表明所提方法具有较高预测精度和泛化适应能力。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 高斯过程回归 动态自适应免疫粒子群
下载PDF
Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural network and Gaussian process regression
19
作者 Zhiyuan WEI Changying LIU +2 位作者 Xiaowen SUN Yiduo LI Haiyan LU 《Frontiers in Energy》 SCIE EI CSCD 2024年第4期447-462,共16页
Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but... Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery.In order to improve the prediction accuracy of the RUL of LIBs,a two-phase RUL early prediction method combining neural network and Gaussian process regression(GPR)is proposed.In the initial phase,the features related to the capacity degradation of LIBs are utilized to train the neural network model,which is used to predict the initial cycle lifetime of 124 LIBs.The Pearson coefficient’s two most significant characteristic factors and the predicted normalized lifetime form a 3D space.The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated,and the shortest distance is considered to have a similar degradation pattern,which is used to determine the initial Dual Exponential Model(DEM).In the second phase,GPR uses the DEM as the initial parameter to predict each test set’s early RUL(ERUL).By testing four batteries under different working conditions,the RMSE of all capacity estimation is less than 1.2%,and the accuracy percentage(AP)of remaining life prediction is more than 98%.Experiments show that the method does not need human intervention and has high prediction accuracy. 展开更多
关键词 lithium-ion batteries RUL prediction double exponential model neural network gaussian process regression(gpr)
原文传递
Data-driven Two-step Day-ahead Electricity Price Forecasting Considering Price Spikes 被引量:2
20
作者 Shengyuan Liu Yicheng Jiang +3 位作者 Zhenzhi Lin Fushuan Wen Yi Ding Li Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期523-533,共11页
In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximi... In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximizing revenues.Hence,it is necessary for a power generation company to develop an accurate electricity price forecasting algorithm.Given this background,this paper proposes a two-step day-ahead electricity price forecasting algorithm based on the weighted Knearest neighborhood(WKNN)method and the Gaussian process regression(GPR)approach.In the first step,several predictors,i.e.,operation indicators,are presented and the WKNN method is employed to detect the day-ahead price spike based on these indicators.In the second step,the outputs of the first step are regarded as a new predictor,and it is utilized together with the operation indicators to accurately forecast the electricity price based on the GPR approach.The proposed algorithm is verified by actual market data in Pennsylvania-New JerseyMaryland Interconnection(PJM),and comparisons between this algorithm and existing ones are also made to demonstrate the effectiveness of the proposed algorithm.Simulation results show that the proposed algorithm can attain accurate price forecasting results even with several price spikes in historical electricity price data. 展开更多
关键词 Electricity market electricity price forecasting price spike weighted K-nearest neighborhood(WKNN) gaussian process regression(gpr).
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部