In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is an...In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60373008(国家自然科学基金)the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z105(国家高技术研究发展计划(863))the Key Project of the Ministry of Education of China under Grant No.106019(国家教育部科学技术研究重点项目)
基金Supported by the Natlonal Natural Science Foundation of China
文摘In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.