In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structur...In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.展开更多
The continuous Scanning Laser Doppler Vibrometry(SLDV)developed on the base of the galvanometer scanner system has made it possible to quickly obtain the full field vibration responses within a rectangular area of the...The continuous Scanning Laser Doppler Vibrometry(SLDV)developed on the base of the galvanometer scanner system has made it possible to quickly obtain the full field vibration responses within a rectangular area of the structure.In this paper,an arbitrary continuous scanning path generating method for Continuous Scanning Laser Doppler Vibometry(CSLDV)is further put forward in order to allow the CSLDV suitable for testing structures featured by complex shapes not just for regular areas.In the first step,the relationship between position of laser spot and the driving voltages of galvanometer scanner system has been described by a mathematical modeling.Then,a novel arbitrary scanning path generating strategy based on CSLDV is presented by deforming a normalization rectangular scanning path to an arbitrary continuous scanning path.The mapping relation between the normalization rectangular scanning path and arbitrary continuous scanning path is established using the reference points.In the second step,a compressor blade with curved surface was taken as an example for modal test using the proposed method.At the same time,a validated experiment was performed in SLDV.The results show the mode shapes derived from the extended CSLDV are in agreement with those from SLDV and the Modal Assurance Criterion(MAC)between the two are all greater than 0.96.They also demonstrate the feasibility and effectiveness of the proposed method for CSLDV test and show strong potential on further practical engineering applications.展开更多
The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to p...The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.展开更多
With the wide application of laser in the field of skin plastic surgery, micro laser galvanometer scanner has made great progress in this field with its portability. However, the measurement method used to measure the...With the wide application of laser in the field of skin plastic surgery, micro laser galvanometer scanner has made great progress in this field with its portability. However, the measurement method used to measure the deflection angle of laser galvanometer in the narrow space of scanner with high precision remains to be studied. In this paper, an angle measurement method based on magnetic field is proposed, and the effect of the shapes of permanent magnets(PMs) on the measurement is studied by theoretical and experimental study under the condition that the maximum available space for the PMs is a 10 mm side cube. An angle measuring experimental device is set up, and the contrast experiment is carried out with different PMs which are the same as simulation. The experimental results show that cylindrical PM is more suitable than other PMs, which is consistent with the simulation results, and the maximum nonlinearity error is 0.562%. This method has the advantages of small volume,non-contact measurement, small moment of inertia, good dynamic response and no external excitation for the PMs, so it has a broad application prospect in micro laser galvanometer scanner.展开更多
文摘In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.
基金the financial support for this work provided by the National Natural Science Foundation of China and National Safety Academic Foundation of China(No.U1730129)The Cultivation Foundation of National Defense Large Projects of China(No.NP2018450)。
文摘The continuous Scanning Laser Doppler Vibrometry(SLDV)developed on the base of the galvanometer scanner system has made it possible to quickly obtain the full field vibration responses within a rectangular area of the structure.In this paper,an arbitrary continuous scanning path generating method for Continuous Scanning Laser Doppler Vibometry(CSLDV)is further put forward in order to allow the CSLDV suitable for testing structures featured by complex shapes not just for regular areas.In the first step,the relationship between position of laser spot and the driving voltages of galvanometer scanner system has been described by a mathematical modeling.Then,a novel arbitrary scanning path generating strategy based on CSLDV is presented by deforming a normalization rectangular scanning path to an arbitrary continuous scanning path.The mapping relation between the normalization rectangular scanning path and arbitrary continuous scanning path is established using the reference points.In the second step,a compressor blade with curved surface was taken as an example for modal test using the proposed method.At the same time,a validated experiment was performed in SLDV.The results show the mode shapes derived from the extended CSLDV are in agreement with those from SLDV and the Modal Assurance Criterion(MAC)between the two are all greater than 0.96.They also demonstrate the feasibility and effectiveness of the proposed method for CSLDV test and show strong potential on further practical engineering applications.
基金the support of the US Department of State through Fulbright Scholar Grant 474/2009
文摘The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.
基金supported by the Aeronautical Science Foundation of China [grant numbers 20175748009]。
文摘With the wide application of laser in the field of skin plastic surgery, micro laser galvanometer scanner has made great progress in this field with its portability. However, the measurement method used to measure the deflection angle of laser galvanometer in the narrow space of scanner with high precision remains to be studied. In this paper, an angle measurement method based on magnetic field is proposed, and the effect of the shapes of permanent magnets(PMs) on the measurement is studied by theoretical and experimental study under the condition that the maximum available space for the PMs is a 10 mm side cube. An angle measuring experimental device is set up, and the contrast experiment is carried out with different PMs which are the same as simulation. The experimental results show that cylindrical PM is more suitable than other PMs, which is consistent with the simulation results, and the maximum nonlinearity error is 0.562%. This method has the advantages of small volume,non-contact measurement, small moment of inertia, good dynamic response and no external excitation for the PMs, so it has a broad application prospect in micro laser galvanometer scanner.