In this paper, we introduce a new extrapolation formula by combining Richardson extrapolation and Sloan iteration algorithms. Using this extrapolation formula, we obtain some asymptotic expansions of the Galerkin fini...In this paper, we introduce a new extrapolation formula by combining Richardson extrapolation and Sloan iteration algorithms. Using this extrapolation formula, we obtain some asymptotic expansions of the Galerkin finite element method for semi-simple eigenvalue problems of Fredholm integral equations of the second kind and improve the accuracy of the numerical approximations of the corresponding eigenvalues. Some numerical experiments ave carried out to demonstrate the effectiveness of our new method and to confirm our theoretical results.展开更多
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function...In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.展开更多
This work is aim at providing a numerical technique for the Volterra integral equations using Galerkin method. For this purpose, an effective matrix formulation is proposed to solve linear Volterra integral equations ...This work is aim at providing a numerical technique for the Volterra integral equations using Galerkin method. For this purpose, an effective matrix formulation is proposed to solve linear Volterra integral equations of the first and second kind respectively using orthogonal polynomials as trial functions which are constructed in the interval [-1,1] with respect to the weight function w(x)=1+x<sup>2</sup>. The efficiency of the proposed method is tested on several numerical examples and compared with the analytic solutions available in the literature.展开更多
In this paper, we study the behavior of the solution at the crack edges for a nearly circular crack with developing cusps subject to shear loading. The problem of finding the resulting force can be written in the form...In this paper, we study the behavior of the solution at the crack edges for a nearly circular crack with developing cusps subject to shear loading. The problem of finding the resulting force can be written in the form of a hypersingular integral equation. The equation is then trans-formed into a similar equation over a circular region using conformal mapping. The equation is solved numerically for the unknown coefficients, which will later be used in finding the stress intensity factors. The sliding and tearing mode stress intensity factors are evaluated for cracks and displayed graphically. Our results seem to agree with the existing asymptotic solution.展开更多
In this paper we represent a new numerical method for solving the steady Navier-Stokes equations in three dimensional unbounded domain. The method consists in coupling the boundary integral and the finite element nonl...In this paper we represent a new numerical method for solving the steady Navier-Stokes equations in three dimensional unbounded domain. The method consists in coupling the boundary integral and the finite element nonlinear Galerkin methods. An artificial smooth boundary is introduced seperating an interior inhomogeneous region from an exterior one. The Navier-Stokes equations in the exterior region are approximated by the Oseen equations and the approximate solution is represented by an integral equation over the artificial boundary. Moreover, a finite element nonlinear Galerkin method is used to approximate the resulting variational problem. Finally, the existence and error estimates are derived.展开更多
In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the soluti...In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.展开更多
The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersi...The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.展开更多
基金the Governor's Special Foundation of Guizhou Province for Outstanding Scientific Education Personnel (No.[2005]155),China
文摘In this paper, we introduce a new extrapolation formula by combining Richardson extrapolation and Sloan iteration algorithms. Using this extrapolation formula, we obtain some asymptotic expansions of the Galerkin finite element method for semi-simple eigenvalue problems of Fredholm integral equations of the second kind and improve the accuracy of the numerical approximations of the corresponding eigenvalues. Some numerical experiments ave carried out to demonstrate the effectiveness of our new method and to confirm our theoretical results.
文摘In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.
文摘This work is aim at providing a numerical technique for the Volterra integral equations using Galerkin method. For this purpose, an effective matrix formulation is proposed to solve linear Volterra integral equations of the first and second kind respectively using orthogonal polynomials as trial functions which are constructed in the interval [-1,1] with respect to the weight function w(x)=1+x<sup>2</sup>. The efficiency of the proposed method is tested on several numerical examples and compared with the analytic solutions available in the literature.
基金supported by the Ministry Of Higher Education Malaysia for the Fundamental Research Grant scheme,project No. 01-04-10-897FRthe NSF scholarship
文摘In this paper, we study the behavior of the solution at the crack edges for a nearly circular crack with developing cusps subject to shear loading. The problem of finding the resulting force can be written in the form of a hypersingular integral equation. The equation is then trans-formed into a similar equation over a circular region using conformal mapping. The equation is solved numerically for the unknown coefficients, which will later be used in finding the stress intensity factors. The sliding and tearing mode stress intensity factors are evaluated for cracks and displayed graphically. Our results seem to agree with the existing asymptotic solution.
文摘In this paper we represent a new numerical method for solving the steady Navier-Stokes equations in three dimensional unbounded domain. The method consists in coupling the boundary integral and the finite element nonlinear Galerkin methods. An artificial smooth boundary is introduced seperating an interior inhomogeneous region from an exterior one. The Navier-Stokes equations in the exterior region are approximated by the Oseen equations and the approximate solution is represented by an integral equation over the artificial boundary. Moreover, a finite element nonlinear Galerkin method is used to approximate the resulting variational problem. Finally, the existence and error estimates are derived.
文摘In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.
文摘The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.