In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and o...In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and operation of FCC unit. Consequently, it is significant to predict the coke yield accurately. The coke formation and burning reactions are affected by many parameters which influence each other, so it is difficult to establish a prediction model using traditional models. This paper combines the industrial production data and establishes a generalized regression neural network(GRNN) model and a back propagation(BP) neural network model to predict the coke yield respectively. The comparison and analysis results show that the accuracy and stability of the BP neural network prediction results are better than that of the GRNN. Then, the particle swarm optimization to optimize BP neural network(PSO-BP) and genetic algorithm to optimize the BP neural network(GA-BP) were further used to improve the prediction precision. The comparison of these models shows that they can improve the prediction precision. However, considering the accuracy and stability of the prediction results, the GA-BP model is better than PSO-BP model.展开更多
文摘In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and operation of FCC unit. Consequently, it is significant to predict the coke yield accurately. The coke formation and burning reactions are affected by many parameters which influence each other, so it is difficult to establish a prediction model using traditional models. This paper combines the industrial production data and establishes a generalized regression neural network(GRNN) model and a back propagation(BP) neural network model to predict the coke yield respectively. The comparison and analysis results show that the accuracy and stability of the BP neural network prediction results are better than that of the GRNN. Then, the particle swarm optimization to optimize BP neural network(PSO-BP) and genetic algorithm to optimize the BP neural network(GA-BP) were further used to improve the prediction precision. The comparison of these models shows that they can improve the prediction precision. However, considering the accuracy and stability of the prediction results, the GA-BP model is better than PSO-BP model.