2002年3月成功发射的美德合作重力卫星计划GRACE(Gravity Recovery And Climate Experiment)已经开始提供阶次数达到120、时间分辨率为约1个月的地球重力场模型时变序列.GRACE的星座由两颗相距约220km,高度保持300-500km,而倾角保...2002年3月成功发射的美德合作重力卫星计划GRACE(Gravity Recovery And Climate Experiment)已经开始提供阶次数达到120、时间分辨率为约1个月的地球重力场模型时变序列.GRACE的星座由两颗相距约220km,高度保持300-500km,而倾角保持约90°的近极轨卫星组成.由于采用星载GPS和非保守力加速度计等高精度定轨技术以及高精度的星.星跟踪数据反演地球重力场,在几百公里和更大空间尺度上,GRACE重力场的精度大大超过此前的卫星重力观测.根据GRACE时变重力场反演的地球系统质量重新分布对固体地球物理、海洋物理、气候学以及大地测量等应用有重要的意义.在长期时间尺度上,GRACE的结果可用于研究北极冰的变化,并进而研究极冰融化对全球气候变化,特别是对海平面长期变化的影响.在季节性时间尺度上,利用GRACE重力场的精度足以揭示平均小于1cm的地表水变化或小于1mbar的海底压强变化.除了巨大的社会和经济效益外,这些变化对了解地球系统的物质循环(主要是水循环)和能量循环有非常重要的意义.利用2002年4月至2003年12月之间共15个月的GRACE时变重力场揭示了全球水储量的明显季节性变化,并重点分析了中国长江流域水储量的变化.结果表明长江流域水储量周年变化幅度可达到3.4cm等效水高,其最大值出现在春季和初秋.根据GRACE时变重力场反演的水储量变化与两个目前最好的全球水文模型的符合相当好,其差别小于1cm等效水高.研究表明现代空间重力测量技术在监测一些大流域的水储量变化(如长江流域)、全球水循环和气候变化上有巨大的应用潜力.展开更多
GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)...GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)全球水文模型进行对比分析,其结果在时空分布上均符合较好,同时在2009年秋至2010年春该区域陆地水储量均呈现明显减少,与该时段云贵川三省的干旱事件相一致;比较分析了2009年秋至2010年春GRACE反演陆地水储量变化与TRMM(Tropical Rainfall Measuring Mission)合成数据计算的月降雨量的时空分布,两组结果均与西南干旱事件对应时段与区域十分吻合;对近8年的陆地水储量变化与月降雨量数据进行相关性分析,其结果表明陆地水储量变化与降雨量强相关,即降雨量是导致陆地水储量变化的主要因素;分析该区域地表温度变化,结果显示2009年9月至2010年3月地表温度均比历史同期高,地表温度的升高加剧了陆地水储量的减少.展开更多
黑河流域水储量变化对该区域的生态环境和经济建设等具有重要影响。本文利用2002-08—2011-06的GRACE(gravity recovery and climate experiment)时变重力场模型GRGS-EIGEN-GL04,采用去相关滤波P3M6与300km高斯滤波相结合的滤波方法反...黑河流域水储量变化对该区域的生态环境和经济建设等具有重要影响。本文利用2002-08—2011-06的GRACE(gravity recovery and climate experiment)时变重力场模型GRGS-EIGEN-GL04,采用去相关滤波P3M6与300km高斯滤波相结合的滤波方法反演了黑河流域陆地水储量变化,扣除GLDAS(global land data assimilation system)水文模型计算的土壤水和冰雪变化,给出了黑河流域地下水储量的时空变化,并利用张掖地区23口地下水测井数据对地下水反演结果进行了初步验证。研究结果表明:①黑河流域陆地水储量整体上呈现减少趋势,与该流域气候变化和CPC(Climate Prediction Center)水文模型的计算结果具有较好的一致性,其减少速率为2.3cm/a等效水高;②黑河流域地下水储量呈现长期减少趋势,其减少速率为2.5cm/a等效水高,上、中游区域地下水储量减少速率相当,下游区域地下水储量减少速率明显小于中上游区域。展开更多
本文利用GRACE(Gravity Recovery and Climate Experiment)卫星重力资料研究了亚马逊流域2002—2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002—2003年和2005年,亚马逊流域发生明显的干旱...本文利用GRACE(Gravity Recovery and Climate Experiment)卫星重力资料研究了亚马逊流域2002—2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002—2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262km3,这相当于全球海平面上升3.2±0.7mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.展开更多
Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position a...Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.展开更多
文摘2002年3月成功发射的美德合作重力卫星计划GRACE(Gravity Recovery And Climate Experiment)已经开始提供阶次数达到120、时间分辨率为约1个月的地球重力场模型时变序列.GRACE的星座由两颗相距约220km,高度保持300-500km,而倾角保持约90°的近极轨卫星组成.由于采用星载GPS和非保守力加速度计等高精度定轨技术以及高精度的星.星跟踪数据反演地球重力场,在几百公里和更大空间尺度上,GRACE重力场的精度大大超过此前的卫星重力观测.根据GRACE时变重力场反演的地球系统质量重新分布对固体地球物理、海洋物理、气候学以及大地测量等应用有重要的意义.在长期时间尺度上,GRACE的结果可用于研究北极冰的变化,并进而研究极冰融化对全球气候变化,特别是对海平面长期变化的影响.在季节性时间尺度上,利用GRACE重力场的精度足以揭示平均小于1cm的地表水变化或小于1mbar的海底压强变化.除了巨大的社会和经济效益外,这些变化对了解地球系统的物质循环(主要是水循环)和能量循环有非常重要的意义.利用2002年4月至2003年12月之间共15个月的GRACE时变重力场揭示了全球水储量的明显季节性变化,并重点分析了中国长江流域水储量的变化.结果表明长江流域水储量周年变化幅度可达到3.4cm等效水高,其最大值出现在春季和初秋.根据GRACE时变重力场反演的水储量变化与两个目前最好的全球水文模型的符合相当好,其差别小于1cm等效水高.研究表明现代空间重力测量技术在监测一些大流域的水储量变化(如长江流域)、全球水循环和气候变化上有巨大的应用潜力.
文摘GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)全球水文模型进行对比分析,其结果在时空分布上均符合较好,同时在2009年秋至2010年春该区域陆地水储量均呈现明显减少,与该时段云贵川三省的干旱事件相一致;比较分析了2009年秋至2010年春GRACE反演陆地水储量变化与TRMM(Tropical Rainfall Measuring Mission)合成数据计算的月降雨量的时空分布,两组结果均与西南干旱事件对应时段与区域十分吻合;对近8年的陆地水储量变化与月降雨量数据进行相关性分析,其结果表明陆地水储量变化与降雨量强相关,即降雨量是导致陆地水储量变化的主要因素;分析该区域地表温度变化,结果显示2009年9月至2010年3月地表温度均比历史同期高,地表温度的升高加剧了陆地水储量的减少.
文摘黑河流域水储量变化对该区域的生态环境和经济建设等具有重要影响。本文利用2002-08—2011-06的GRACE(gravity recovery and climate experiment)时变重力场模型GRGS-EIGEN-GL04,采用去相关滤波P3M6与300km高斯滤波相结合的滤波方法反演了黑河流域陆地水储量变化,扣除GLDAS(global land data assimilation system)水文模型计算的土壤水和冰雪变化,给出了黑河流域地下水储量的时空变化,并利用张掖地区23口地下水测井数据对地下水反演结果进行了初步验证。研究结果表明:①黑河流域陆地水储量整体上呈现减少趋势,与该流域气候变化和CPC(Climate Prediction Center)水文模型的计算结果具有较好的一致性,其减少速率为2.3cm/a等效水高;②黑河流域地下水储量呈现长期减少趋势,其减少速率为2.5cm/a等效水高,上、中游区域地下水储量减少速率相当,下游区域地下水储量减少速率明显小于中上游区域。
文摘本文利用GRACE(Gravity Recovery and Climate Experiment)卫星重力资料研究了亚马逊流域2002—2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002—2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262km3,这相当于全球海平面上升3.2±0.7mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.
基金supported by the National Natural Science Foundation of China (Grant No 40674038)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant Nos KZCX2-YW-143 and KZCX2-YW-202)+1 种基金the National High Technology Research and Development Program of China (863) (Grant Nos 2009AA12Z138 and 2006AA09Z153)the Grant-in-Aid for Scientific Research of Japan (Grant No B19340129)
文摘Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10^-1 m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825 × 10^-2 m at degree 360 using GRACE Follow-On orbital altitude 250 km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.