In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such th...In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such that an = 0 and anRbn = 0.The non-singularity and regularity of quasi ZI,GP-Vˊ-rings are studied.Some new characterizations of strong regular rings are obtained.These effectively extend some known results.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos.10871106 10901002+1 种基金 10971099)the Natural Science Foundation of Anhui Provincial Education Committee (Grant No.KJ2008A026)
文摘In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such that an = 0 and anRbn = 0.The non-singularity and regularity of quasi ZI,GP-Vˊ-rings are studied.Some new characterizations of strong regular rings are obtained.These effectively extend some known results.