This paper defines a pairing of two finite Hopf C^*-algebras A and B, and investigates the interactions between them. If the pairing is non-degenerate, then the quantum double construction is given. This construction...This paper defines a pairing of two finite Hopf C^*-algebras A and B, and investigates the interactions between them. If the pairing is non-degenerate, then the quantum double construction is given. This construction yields a new finite Hopf C^*-algebra D(A, B). The canonical embedding maps of A and B into the double are both isometric.展开更多
Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Ge...Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.展开更多
Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monoton...Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear.展开更多
基金the National Natural Science Foundation of China(No.10301004)Excellent Young Scholars Research Fund of Beijing Institute of Technology(00Y07-25)
文摘This paper defines a pairing of two finite Hopf C^*-algebras A and B, and investigates the interactions between them. If the pairing is non-degenerate, then the quantum double construction is given. This construction yields a new finite Hopf C^*-algebra D(A, B). The canonical embedding maps of A and B into the double are both isometric.
文摘Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.
基金the Youth Foundation of Sichuan Education Department (No.2003B017)the Doctoral Foundation of Chongqing Normal University (No.08XLB013)
文摘Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear.