Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electroni...Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.展开更多
针对锂离子电池荷电状态(Stage of charge,SOC)在线估计精度不高,等效电路模型法估计精度与模型复杂度相矛盾的问题,本文对扩展卡尔曼滤波算法进行了改进,并以电池工作电压、电流为输入,对应等效电路模型法的SOC估计误差为输出,采用极...针对锂离子电池荷电状态(Stage of charge,SOC)在线估计精度不高,等效电路模型法估计精度与模型复杂度相矛盾的问题,本文对扩展卡尔曼滤波算法进行了改进,并以电池工作电压、电流为输入,对应等效电路模型法的SOC估计误差为输出,采用极限学习机算法,建立基于输入输出数据的SOC估计误差预测模型,采用物理–数据融合方法,基于误差预测模型,建立了等效电路模型法结合极限学习机的锂离子电池SOC在线估计模型.仿真结果表明,改进扩展卡尔曼滤波算法提高了算法的估计精度,而物理–数据融合的锂离子电池SOC在线估计模型减小了由电压、电流测量所引入的估计误差,克服了等效电路模型法估计精度与模型复杂度之间相矛盾的问题,进一步提高了SOC的估计精度,满足估计误差不超过5%的应用需求.展开更多
文摘Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.
文摘针对锂离子电池荷电状态(Stage of charge,SOC)在线估计精度不高,等效电路模型法估计精度与模型复杂度相矛盾的问题,本文对扩展卡尔曼滤波算法进行了改进,并以电池工作电压、电流为输入,对应等效电路模型法的SOC估计误差为输出,采用极限学习机算法,建立基于输入输出数据的SOC估计误差预测模型,采用物理–数据融合方法,基于误差预测模型,建立了等效电路模型法结合极限学习机的锂离子电池SOC在线估计模型.仿真结果表明,改进扩展卡尔曼滤波算法提高了算法的估计精度,而物理–数据融合的锂离子电池SOC在线估计模型减小了由电压、电流测量所引入的估计误差,克服了等效电路模型法估计精度与模型复杂度之间相矛盾的问题,进一步提高了SOC的估计精度,满足估计误差不超过5%的应用需求.