目的:探索基于眼底彩照和人工智能构建冠心病智能诊断系统的可行性。方法:于2013—2014年收集广东省人民医院530例患者共2117张眼底彩照,其中冠心病217例共909张眼底彩照。根据患者有无冠心病的情况进行标记,使用Inception-V3深度卷积...目的:探索基于眼底彩照和人工智能构建冠心病智能诊断系统的可行性。方法:于2013—2014年收集广东省人民医院530例患者共2117张眼底彩照,其中冠心病217例共909张眼底彩照。根据患者有无冠心病的情况进行标记,使用Inception-V3深度卷积神经网络训练人工智能模型,随后使用验证数据判断模型的准确率。计算深度卷积网络模型的准确性、一致率、敏感性、特异性和受试者工作特性曲线下面积(area under the curve,AUC)。结果:在2117张眼底彩照中,1903张用于模型训练,214张用于模型的性能评估。在测试集中,该算法的准确性为98.1%,一致率为98.6%,敏感性为100.0%,特异性为96.7%,AUC为0.988(95%CI:0.974~1.000)。结论:眼底彩照联合人工智能技术可精准判定冠心病,该模型具备较高的敏感性和特异性,但须进一步增加样本量,使用大样本量数据验证该模型,排除过拟合的可能性。展开更多
文摘目的:探索基于眼底彩照和人工智能构建冠心病智能诊断系统的可行性。方法:于2013—2014年收集广东省人民医院530例患者共2117张眼底彩照,其中冠心病217例共909张眼底彩照。根据患者有无冠心病的情况进行标记,使用Inception-V3深度卷积神经网络训练人工智能模型,随后使用验证数据判断模型的准确率。计算深度卷积网络模型的准确性、一致率、敏感性、特异性和受试者工作特性曲线下面积(area under the curve,AUC)。结果:在2117张眼底彩照中,1903张用于模型训练,214张用于模型的性能评估。在测试集中,该算法的准确性为98.1%,一致率为98.6%,敏感性为100.0%,特异性为96.7%,AUC为0.988(95%CI:0.974~1.000)。结论:眼底彩照联合人工智能技术可精准判定冠心病,该模型具备较高的敏感性和特异性,但须进一步增加样本量,使用大样本量数据验证该模型,排除过拟合的可能性。