The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empi...The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empirical formulas for the growth of significant wave height and period. The main features of spectrum growth as specified by these parameters agree with those of the JONS-WAP experiments. For given wind speed and fetch, the high frequency parts beyond the peaks of shallow water spectra almost coincide with that of the corresponding deep water spectrum, whereas the low frequency parts differ appreciably. The method developed in this paper predicts smaller significant wave height as well as smaller wave period for shallow water spectra in contrast to the theoretical result of Kitaigorodskii ef al, in which the peak frequency, and consequently the significant wave period, remains basically unchanged for different water depths. Spectra are further reduced to a form in which only significant wave height and period are left as parameters, the peakness factor being replaced by the wave steepness through an empirical relation between them. Spectra in this form have been verified by observations.展开更多
Optical frequency combs,a revolutionary light source characterized by discrete and equally spaced frequencies,are usually regarded as a cornerstone for advanced frequency metrology,precision spectroscopy,high-speed co...Optical frequency combs,a revolutionary light source characterized by discrete and equally spaced frequencies,are usually regarded as a cornerstone for advanced frequency metrology,precision spectroscopy,high-speed communication,distance ranging,molecule detection,and many others.Due to the rapid development of micro/nanofabrication technology,breakthroughs in the quality factor of microresonators enable ultrahigh energy buildup inside cavities,which gives birth to microcavity-based frequency combs.In particular,the full coherent spectrum of the soliton microcomb(SMC)provides a route to low-noise ultrashort pulses with a repetition rate over two orders of magnitude higher than that of traditional mode-locking approaches.This enables lower power consumption and cost for a wide range of applications.This review summarizes recent achievements in SMCs,including the basic theory and physical model,as well as experimental techniques for single-soliton generation and various extraordinary soliton states(soliton crystals,Stokes solitons,breathers,molecules,cavity solitons,and dark solitons),with a perspective on their potential applications and remaining challenges.展开更多
High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or micro...High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.展开更多
光载无线通信(Radio over Fiber)技术充分结合了光纤和高频无线电波传输的优势,能实现大容量、低成本的射频信号有线传输和超宽带无线接入。首先分别对ROF技术的产生背景、技术优势和发展过程做了简单介绍。然后在对其技术实现方案详细...光载无线通信(Radio over Fiber)技术充分结合了光纤和高频无线电波传输的优势,能实现大容量、低成本的射频信号有线传输和超宽带无线接入。首先分别对ROF技术的产生背景、技术优势和发展过程做了简单介绍。然后在对其技术实现方案详细讨论的基础上,重点研究和分析了该技术在未来通信领域中的应用情况。分析和研究的结果表明光载无线通信技术市场应用前景广阔,具有很大的发展空间。展开更多
文摘The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empirical formulas for the growth of significant wave height and period. The main features of spectrum growth as specified by these parameters agree with those of the JONS-WAP experiments. For given wind speed and fetch, the high frequency parts beyond the peaks of shallow water spectra almost coincide with that of the corresponding deep water spectrum, whereas the low frequency parts differ appreciably. The method developed in this paper predicts smaller significant wave height as well as smaller wave period for shallow water spectra in contrast to the theoretical result of Kitaigorodskii ef al, in which the peak frequency, and consequently the significant wave period, remains basically unchanged for different water depths. Spectra are further reduced to a form in which only significant wave height and period are left as parameters, the peakness factor being replaced by the wave steepness through an empirical relation between them. Spectra in this form have been verified by observations.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61635013 and 61675231)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB24030600)the Youth Innovation Promotion Association of CAS(Grant No.2016353)。
文摘Optical frequency combs,a revolutionary light source characterized by discrete and equally spaced frequencies,are usually regarded as a cornerstone for advanced frequency metrology,precision spectroscopy,high-speed communication,distance ranging,molecule detection,and many others.Due to the rapid development of micro/nanofabrication technology,breakthroughs in the quality factor of microresonators enable ultrahigh energy buildup inside cavities,which gives birth to microcavity-based frequency combs.In particular,the full coherent spectrum of the soliton microcomb(SMC)provides a route to low-noise ultrashort pulses with a repetition rate over two orders of magnitude higher than that of traditional mode-locking approaches.This enables lower power consumption and cost for a wide range of applications.This review summarizes recent achievements in SMCs,including the basic theory and physical model,as well as experimental techniques for single-soliton generation and various extraordinary soliton states(soliton crystals,Stokes solitons,breathers,molecules,cavity solitons,and dark solitons),with a perspective on their potential applications and remaining challenges.
文摘High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
文摘光载无线通信(Radio over Fiber)技术充分结合了光纤和高频无线电波传输的优势,能实现大容量、低成本的射频信号有线传输和超宽带无线接入。首先分别对ROF技术的产生背景、技术优势和发展过程做了简单介绍。然后在对其技术实现方案详细讨论的基础上,重点研究和分析了该技术在未来通信领域中的应用情况。分析和研究的结果表明光载无线通信技术市场应用前景广阔,具有很大的发展空间。