In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found tha...In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C 〈 0.5, go through an initial decreasing stage near ζ= 1, then increase with the increase of propagation distance and linear chirp C for C 〉 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.展开更多
The collision characteristics of the orthogonally polarized solitons with initial linear frequency chirp in the linear birefringent fibre for β2 〈 0 are numerically studied. It is found that initial chirp changes th...The collision characteristics of the orthogonally polarized solitons with initial linear frequency chirp in the linear birefringent fibre for β2 〈 0 are numerically studied. It is found that initial chirp changes the threshold value of solitons to form the bound-state in the birefringent fibre. The effect of initial positive chirp on the threshold value is more obvious than that of negative chirp. In the case of (δ= 0.7 and initial interval 2τ0 = 1.25, the two solitons are mutually bound for 0.2 ≤ C ≤ 1, and they do not form the bound-state for -1 ≤ C 〈 0.2. Frequency shifts increase with the increase of chirp parameter C for -1 ≤ C 〈 0.2, and have the oscillatory structure for C ≥ 0.2. The effect of positive chirp on temporal FWHM is greater than that of negative chirp. The peak of temporal waveform oscillates with the propagation distance. The period and amplitude of the oscillation for the chirped case are greater than those for the unchirped case, and they vary with the increase of |C|. The peak of output temporal waveform can be controlled by changing the initial chirp.展开更多
文摘In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2 〈 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C 〈 0.5, go through an initial decreasing stage near ζ= 1, then increase with the increase of propagation distance and linear chirp C for C 〉 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.
文摘The collision characteristics of the orthogonally polarized solitons with initial linear frequency chirp in the linear birefringent fibre for β2 〈 0 are numerically studied. It is found that initial chirp changes the threshold value of solitons to form the bound-state in the birefringent fibre. The effect of initial positive chirp on the threshold value is more obvious than that of negative chirp. In the case of (δ= 0.7 and initial interval 2τ0 = 1.25, the two solitons are mutually bound for 0.2 ≤ C ≤ 1, and they do not form the bound-state for -1 ≤ C 〈 0.2. Frequency shifts increase with the increase of chirp parameter C for -1 ≤ C 〈 0.2, and have the oscillatory structure for C ≥ 0.2. The effect of positive chirp on temporal FWHM is greater than that of negative chirp. The peak of temporal waveform oscillates with the propagation distance. The period and amplitude of the oscillation for the chirped case are greater than those for the unchirped case, and they vary with the increase of |C|. The peak of output temporal waveform can be controlled by changing the initial chirp.