In this work, a Revisited form of the so-called Model-Free Control(R-MFC) is derived.Herein, the MFC principle is employed to deal with the unknown part of a plant only(i.e., unmodeled dynamics, disturbances, etc....In this work, a Revisited form of the so-called Model-Free Control(R-MFC) is derived.Herein, the MFC principle is employed to deal with the unknown part of a plant only(i.e., unmodeled dynamics, disturbances, etc.) and occurs beside an Interconnection and Damping AssignmentPassivity Based Control(IDA-PBC) strategy. Using the proposed formulation, it is shown that we can significantly improve the performance of the control through the reshaping properties of the IDA-PBC technique. Moreover, the control robustness level is increased via a compensation of the time-varying disturbances and the unmodeled system dynamics. This on-line compensation capability is provided by the MFC principle. The problem is studied in the case of Multi-Input Multi-Output(MIMO) mechanical systems with an explicit application to a small Vertical Take-Off and Landing(VTOL) Unmanned Aerial Vehicle(UAV) where a stability analysis is also provided. Numerical simulations have shown satisfactory results, in comparison with some other control strategies, where an in-depth discussion with respect to the control performance is highlighted by considering several scenarios and using several metrics.展开更多
By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematica...By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematical model, a two-parameter optimization problem of quadrant elevation and rocket ignition time is studied. Using the atmosphere mathematical model, the best glide-starting point of the downward trajectory is determined. With an optimal control mathematical model, the ERGM optimal glide trajectory is obtained.展开更多
文摘In this work, a Revisited form of the so-called Model-Free Control(R-MFC) is derived.Herein, the MFC principle is employed to deal with the unknown part of a plant only(i.e., unmodeled dynamics, disturbances, etc.) and occurs beside an Interconnection and Damping AssignmentPassivity Based Control(IDA-PBC) strategy. Using the proposed formulation, it is shown that we can significantly improve the performance of the control through the reshaping properties of the IDA-PBC technique. Moreover, the control robustness level is increased via a compensation of the time-varying disturbances and the unmodeled system dynamics. This on-line compensation capability is provided by the MFC principle. The problem is studied in the case of Multi-Input Multi-Output(MIMO) mechanical systems with an explicit application to a small Vertical Take-Off and Landing(VTOL) Unmanned Aerial Vehicle(UAV) where a stability analysis is also provided. Numerical simulations have shown satisfactory results, in comparison with some other control strategies, where an in-depth discussion with respect to the control performance is highlighted by considering several scenarios and using several metrics.
文摘By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematical model, a two-parameter optimization problem of quadrant elevation and rocket ignition time is studied. Using the atmosphere mathematical model, the best glide-starting point of the downward trajectory is determined. With an optimal control mathematical model, the ERGM optimal glide trajectory is obtained.