Two-dimensional MXene-based film materials as flexible electrodes have been widely studied in wearable microsupercapacitors(MSCs).However,the existence of strong van derWaals interactions leads to serious self-stackin...Two-dimensional MXene-based film materials as flexible electrodes have been widely studied in wearable microsupercapacitors(MSCs).However,the existence of strong van derWaals interactions leads to serious self-stacking ofMXene layers,resulting in poor ionic dynamics and loss of active sites,which causes MXene film electrodes to exhibit low capacitance and poor rate performance in practical studies.To solve this,a frame-structured hybrid film(labeled as CN-MX hybrid film)is constructed by introducing intercalating agents(nanometer g-C_(3)N_(4))into MXene layers.In this unique hybrid film,the g-C_(3)N_(4)nanoparticles rationally occupy the interspace between MXene layers so as to alleviate layer stacking,thus effectively expanding the electrochemically active surface and promoting proton transfer.Synergistic pseudocapacitance inducted by g-C_(3)N_(4)surface groups,consequently,the CN-MX hybrid film electrode achieves an enhanced capacitive capability.In the three-electrode system,this frame-structured film electrode exhibits an ultra-high areal capacitance of 1932.8 mF cm^(−2).The assembled symmetry flexible MSC device based on CN-MX hybrid film can achieve an energy density of 2.28μWh cm^(−2)at 0.075 mW cm^(−2),as well as a superior cyclic stability with 90.4%retention after 700 cycles in alternating 90o bending and releasing states,revealing its potential in practical applications.展开更多
基金the National Natural Science Foundation of China(grant nos.51877216,52277229,and 22109178)Natural Science Foundation of Shandong Province(grant nos.ZR2020MB078,ZR2021QB085,and ZR2022MB094)+1 种基金National Key Research and Development of China(grant no.2022YFA1503400)Postdoctoral Innovative Talent Support Program of Shandong Province(grant no.SDBX2021005).
文摘Two-dimensional MXene-based film materials as flexible electrodes have been widely studied in wearable microsupercapacitors(MSCs).However,the existence of strong van derWaals interactions leads to serious self-stacking ofMXene layers,resulting in poor ionic dynamics and loss of active sites,which causes MXene film electrodes to exhibit low capacitance and poor rate performance in practical studies.To solve this,a frame-structured hybrid film(labeled as CN-MX hybrid film)is constructed by introducing intercalating agents(nanometer g-C_(3)N_(4))into MXene layers.In this unique hybrid film,the g-C_(3)N_(4)nanoparticles rationally occupy the interspace between MXene layers so as to alleviate layer stacking,thus effectively expanding the electrochemically active surface and promoting proton transfer.Synergistic pseudocapacitance inducted by g-C_(3)N_(4)surface groups,consequently,the CN-MX hybrid film electrode achieves an enhanced capacitive capability.In the three-electrode system,this frame-structured film electrode exhibits an ultra-high areal capacitance of 1932.8 mF cm^(−2).The assembled symmetry flexible MSC device based on CN-MX hybrid film can achieve an energy density of 2.28μWh cm^(−2)at 0.075 mW cm^(−2),as well as a superior cyclic stability with 90.4%retention after 700 cycles in alternating 90o bending and releasing states,revealing its potential in practical applications.