The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency...The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.展开更多
在此介绍了小数分频锁相频率合成器的相关理论。设计一个带宽为580 MHz、杂散抑制度≤-60 d Bc、相位噪声≤-85 d Bc/Hz@10 k Hz的C频段宽带低杂散频率合成器。利用双环锁相频率合成技术和小数分频锁相技术,实现了宽带、低杂散的锁相频...在此介绍了小数分频锁相频率合成器的相关理论。设计一个带宽为580 MHz、杂散抑制度≤-60 d Bc、相位噪声≤-85 d Bc/Hz@10 k Hz的C频段宽带低杂散频率合成器。利用双环锁相频率合成技术和小数分频锁相技术,实现了宽带、低杂散的锁相频率合成器的设计。最后经过测试近端杂散指标≤-60 d Bc,远端杂散指标≤-70 d Bc,偏移10 k Hz的相位噪声为-89.95 d Bc/Hz,技术指标都优于设计要求。展开更多
For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform ...For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.展开更多
针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-fr...针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。展开更多
To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is ...To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.展开更多
以单基地多输入多输出(multiple input multiple output,MIMO)雷达系统为研究对象,针对线性调频(linear frequency modulation,LFM)形式的正交频分复用(orthogonal frequency division multiplexing,OFDM)信号,提出了一种新的稳健自适...以单基地多输入多输出(multiple input multiple output,MIMO)雷达系统为研究对象,针对线性调频(linear frequency modulation,LFM)形式的正交频分复用(orthogonal frequency division multiplexing,OFDM)信号,提出了一种新的稳健自适应波束形成算法。所提算法首先利用LFM信号的特性,对匹配滤波后的雷达回波信号进行分数阶傅里叶变换(fractional Fourier transform,FRFT),经化简得到峰值点作为阵列的观测值。而后,利用观测值构建接收信号的协方差矩阵,并使用Capon谱估计方法重构干扰加噪声数据协方差矩阵。最后,通过求解优化问题估计实际导向矢量,从而得到阵列的最优权值。通过计算机仿真实验,验证了所提算法的有效性。展开更多
In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, ...In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61501348 and 61271299China Postdoctoral Science Foundation funded project under Grant No.2014M562372+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2016JQ6039the 111 Project under Grant No.B08038
文摘The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.
文摘在此介绍了小数分频锁相频率合成器的相关理论。设计一个带宽为580 MHz、杂散抑制度≤-60 d Bc、相位噪声≤-85 d Bc/Hz@10 k Hz的C频段宽带低杂散频率合成器。利用双环锁相频率合成技术和小数分频锁相技术,实现了宽带、低杂散的锁相频率合成器的设计。最后经过测试近端杂散指标≤-60 d Bc,远端杂散指标≤-70 d Bc,偏移10 k Hz的相位噪声为-89.95 d Bc/Hz,技术指标都优于设计要求。
基金supported by the National Natural Science Foundation of China(60672047).
文摘For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.
文摘针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。
基金supported by the National Science and Technology Major Project of China(2013ZX03003006-003)
文摘To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.
文摘In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.