Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to ...Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to as harmful algal blooms (HABs). Characterization of HABs is necessary to reduce risks from human and animal exposures to toxins. Current methods used to classify cyanobacteria and cyanotoxins have limitations related to time, analyst skills, and cost. Fourier-Transform Infrared Spectroscopy (FTIR) is a potential tool for rapid, robust cyanobacterial classification that is not limited by these factors. To examine the practicality of this method, library screening with default software algorithms was performed on HAB samples, followed by principle component cluster analyses and dendrogram analysis of samples meeting minimum quality requirements. Two tested spectrometers and software packages were successful at distinguishing cyanobacteria from green algae. Principle component cluster analysis and dendrogram analysis also resulted in clear differentiation between cyanobacteria and green algae. While these methods cannot be used independently to fully characterize HABs, they show the potential and practicality of FTIR as a screening tool.展开更多
Proteinaceous infectious particles(prions) are unique pathogens as they are devoid of any coding nucleic acid.Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein...Proteinaceous infectious particles(prions) are unique pathogens as they are devoid of any coding nucleic acid.Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein, the structural insight of prions is still vague and research for high resolution structural information of prions is still ongoing. In this review, techniques that may contribute to the clarification of the conformation of prions are presented and discussed.展开更多
The compost products of Camellia oleifera shell/meal mixed at different mass ratios were characterized by Fourier-transform infrared spectroscopy (FTIR) at different composting stages to monitor the structural changes...The compost products of Camellia oleifera shell/meal mixed at different mass ratios were characterized by Fourier-transform infrared spectroscopy (FTIR) at different composting stages to monitor the structural changes of their components. The results showed that the amount of Camellia oleifera meal significantly affected the composting rate of the shell, but did not change the degradation order and decomposition of the related compounds. During the composting process, microorganisms used the highly decomposable carbon source materials, such as proteins and sugars, first to grow and multiply, and then decomposed hemicellulose, cellulose and lignin by oxidative cleavage after these nutrients were consumed to a certain extent. The decomposition products were then condensed into more stable humic acids. The degradation rates of the compounds were directly proportional to the amount of Camellia oleifera?meal. The compounds in Camellia oleifera shell were composted faster with higher amounts of Camellia oleifera meals, resulting in less lignocellulose in the final products.展开更多
文摘Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to as harmful algal blooms (HABs). Characterization of HABs is necessary to reduce risks from human and animal exposures to toxins. Current methods used to classify cyanobacteria and cyanotoxins have limitations related to time, analyst skills, and cost. Fourier-Transform Infrared Spectroscopy (FTIR) is a potential tool for rapid, robust cyanobacterial classification that is not limited by these factors. To examine the practicality of this method, library screening with default software algorithms was performed on HAB samples, followed by principle component cluster analyses and dendrogram analysis of samples meeting minimum quality requirements. Two tested spectrometers and software packages were successful at distinguishing cyanobacteria from green algae. Principle component cluster analysis and dendrogram analysis also resulted in clear differentiation between cyanobacteria and green algae. While these methods cannot be used independently to fully characterize HABs, they show the potential and practicality of FTIR as a screening tool.
基金Supported by Alberta Prion Research Institute,Canada(Project title:"Comprehensive Risk Assessment of CWD Transmission to Humans Using Non-human Primates")European Metrology Research Programme(EMRP)Researcher Grant:HLT10-Bi Origin(Metrology for the Biomolecular Origin of Disease)
文摘Proteinaceous infectious particles(prions) are unique pathogens as they are devoid of any coding nucleic acid.Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein, the structural insight of prions is still vague and research for high resolution structural information of prions is still ongoing. In this review, techniques that may contribute to the clarification of the conformation of prions are presented and discussed.
文摘The compost products of Camellia oleifera shell/meal mixed at different mass ratios were characterized by Fourier-transform infrared spectroscopy (FTIR) at different composting stages to monitor the structural changes of their components. The results showed that the amount of Camellia oleifera meal significantly affected the composting rate of the shell, but did not change the degradation order and decomposition of the related compounds. During the composting process, microorganisms used the highly decomposable carbon source materials, such as proteins and sugars, first to grow and multiply, and then decomposed hemicellulose, cellulose and lignin by oxidative cleavage after these nutrients were consumed to a certain extent. The decomposition products were then condensed into more stable humic acids. The degradation rates of the compounds were directly proportional to the amount of Camellia oleifera?meal. The compounds in Camellia oleifera shell were composted faster with higher amounts of Camellia oleifera meals, resulting in less lignocellulose in the final products.