期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
积分变换教学中的深入浅出式方法研究 被引量:2
1
作者 吕诚 《鸡西大学学报(综合版)》 2015年第10期27-29,共3页
复变函数与积分变换这门课程中最困难的地方当属积分变换,如何改变大多数学生只会机械模仿公式进行计算,无法深刻理解并灵活变通,是该课程教学改革的当务之急。如能采用深入浅出式教学方式,结合前期高等数学基础,可以让学生适当掌握积... 复变函数与积分变换这门课程中最困难的地方当属积分变换,如何改变大多数学生只会机械模仿公式进行计算,无法深刻理解并灵活变通,是该课程教学改革的当务之急。如能采用深入浅出式教学方式,结合前期高等数学基础,可以让学生适当掌握积分变换的原理,并熟悉其解方程的思路。在此将具体探讨怎样深入浅出地进行积分变换的课堂教学,提高教学效果。 展开更多
关键词 积分变换 傅里叶级数 傅里叶变换 傅里叶积分公式
下载PDF
付里叶积分定理的一种证法
2
作者 李淑俊 《包头钢铁学院学报》 1994年第3期7-11,共5页
本文利用维尔斯特拉斯检验法及黎曼引理,对付里叶积分定理进行了新的严格的论证。
关键词 黎曼引理 付里叶积分定理 数学分析
下载PDF
Fractionalization of a Class of Semi-Linear Differential Equations
3
作者 Issic K. C. Leung K. Gopalsamy 《Applied Mathematics》 2017年第11期1715-1744,共30页
The dynamics of a fractionalized semi-linear scalar differential equation is considered with a Caputo fractional derivative. By using a symbolic operational method, a fractional order initial value problem is converte... The dynamics of a fractionalized semi-linear scalar differential equation is considered with a Caputo fractional derivative. By using a symbolic operational method, a fractional order initial value problem is converted into an equivalent Volterra integral equation of second kind. A brief discussion is included to show that the fractional order derivatives and integrals incorporate a fading memory (also known as long memory) and that the order of the fractional derivative can be considered to be an index of memory. A variation of constants formula is established for the fractionalized version and it is shown by using the Fourier integral theorem that this formula reduces to that of the integer order differential equation as the fractional order approaches an integer. The global existence of a unique solution and the global Mittag-Leffler stability of an equilibrium are established by exploiting the complete monotonicity of one and two parameter Mittag-Leffler functions. The method and the analysis employed in this article can be used for the study of more general systems of fractional order differential equations. 展开更多
关键词 FRACTIONAL integral Caputo FRACTIONAL Derivative Fading Memory Mittag-Leffler Functions Complete MONOTONICITY FRACTIONALIZATION Variation of CONSTANTS Formula fourier integral theorem Mittag-Leffler Stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部