Broadband, high-speed wavelength-swept lasers can substantially enhance applications in optical coherence tomography, chemical spectroscopy, and fiber-optic sensing. We report the demonstration of Fourier-domain mode-...Broadband, high-speed wavelength-swept lasers can substantially enhance applications in optical coherence tomography, chemical spectroscopy, and fiber-optic sensing. We report the demonstration of Fourier-domain mode-lock lasers operating at about 90kHz effective sweep rate over a 158nm sweep range using a single-band design and over a 284nm sweep range across the 1.3 μm to 1.5μm wavelength spectrum using a unique broadband design. A novel dual-detection full-range Fourier-domain optical coherence tomography system is developed which provides 7 I-tm axial resolution (in air)at about 90 kHz axial scan rate for mirror-image resolved Doppler imaging in a human finger and an African frog tadpole.展开更多
基金Acknowledgement This work was supported in part by the Florida I4 Corridor, the New York State Foundation for Science, Technology, and Innovation (NYSTAR), the Royal Thai Government, and the Photonics Technology Access Program (PTAP) sponsored by the Defense Advanced Research Projects Agency and National Science Foundation (DARPA & NSF).
文摘Broadband, high-speed wavelength-swept lasers can substantially enhance applications in optical coherence tomography, chemical spectroscopy, and fiber-optic sensing. We report the demonstration of Fourier-domain mode-lock lasers operating at about 90kHz effective sweep rate over a 158nm sweep range using a single-band design and over a 284nm sweep range across the 1.3 μm to 1.5μm wavelength spectrum using a unique broadband design. A novel dual-detection full-range Fourier-domain optical coherence tomography system is developed which provides 7 I-tm axial resolution (in air)at about 90 kHz axial scan rate for mirror-image resolved Doppler imaging in a human finger and an African frog tadpole.